| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimdvaacbv | Structured version Visualization version GIF version | ||
| Description: Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3134. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| rexlimdvaacbv.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
| rexlimdvaacbv.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) |
| Ref | Expression |
|---|---|
| rexlimdvaacbv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvaacbv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
| 2 | 1 | cbvrexv 3331 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜃) |
| 3 | rexlimdvaacbv.2 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) | |
| 4 | 3 | rexlimdvaa 3134 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝜃 → 𝜒)) |
| 5 | 2, 4 | biimtrid 242 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: rexlimddvcbv 44248 |
| Copyright terms: Public domain | W3C validator |