Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimdvaacbv Structured version   Visualization version   GIF version

Theorem rexlimdvaacbv 41705
Description: Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3213. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rexlimdvaacbv.1 (𝑥 = 𝑦 → (𝜓𝜃))
rexlimdvaacbv.2 ((𝜑 ∧ (𝑦𝐴𝜃)) → 𝜒)
Assertion
Ref Expression
rexlimdvaacbv (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜓,𝑦   𝜃,𝑥   𝜑,𝑦   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝜃(𝑦)

Proof of Theorem rexlimdvaacbv
StepHypRef Expression
1 rexlimdvaacbv.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜃))
21cbvrexv 3378 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜃)
3 rexlimdvaacbv.2 . . 3 ((𝜑 ∧ (𝑦𝐴𝜃)) → 𝜒)
43rexlimdvaa 3213 . 2 (𝜑 → (∃𝑦𝐴 𝜃𝜒))
52, 4syl5bi 241 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069
This theorem is referenced by:  rexlimddvcbv  41707
  Copyright terms: Public domain W3C validator