Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimdvaacbv | Structured version Visualization version GIF version |
Description: Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3213. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
rexlimdvaacbv.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
rexlimdvaacbv.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) |
Ref | Expression |
---|---|
rexlimdvaacbv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvaacbv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
2 | 1 | cbvrexv 3378 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜃) |
3 | rexlimdvaacbv.2 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) | |
4 | 3 | rexlimdvaa 3213 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝜃 → 𝜒)) |
5 | 2, 4 | syl5bi 241 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexlimddvcbv 41707 |
Copyright terms: Public domain | W3C validator |