MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rsp2e Structured version   Visualization version   GIF version

Theorem rsp2e 3238
Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.) (Proof shortened by Wolf Lammen, 7-Jan-2020.)
Assertion
Ref Expression
rsp2e ((𝑥𝐴𝑦𝐵𝜑) → ∃𝑥𝐴𝑦𝐵 𝜑)

Proof of Theorem rsp2e
StepHypRef Expression
1 rspe 3237 . . 3 ((𝑦𝐵𝜑) → ∃𝑦𝐵 𝜑)
2 rspe 3237 . . 3 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) → ∃𝑥𝐴𝑦𝐵 𝜑)
31, 2sylan2 593 . 2 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑥𝐴𝑦𝐵 𝜑)
433impb 1114 1 ((𝑥𝐴𝑦𝐵𝜑) → ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-rex 3070
This theorem is referenced by:  pell14qrdich  40691
  Copyright terms: Public domain W3C validator