Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rsp2e | Structured version Visualization version GIF version |
Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.) (Proof shortened by Wolf Lammen, 7-Jan-2020.) |
Ref | Expression |
---|---|
rsp2e | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe 3232 | . . 3 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) | |
2 | rspe 3232 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
4 | 3 | 3impb 1113 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-ex 1784 df-rex 3069 |
This theorem is referenced by: pell14qrdich 40607 |
Copyright terms: Public domain | W3C validator |