|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rsp2e | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.) (Proof shortened by Wolf Lammen, 7-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| rsp2e | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspe 3248 | . . 3 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) | |
| 2 | rspe 3248 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | 
| 4 | 3 | 3impb 1114 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1779 df-rex 3070 | 
| This theorem is referenced by: pell14qrdich 42885 | 
| Copyright terms: Public domain | W3C validator |