Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rsp2e | Structured version Visualization version GIF version |
Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.) (Proof shortened by Wolf Lammen, 7-Jan-2020.) |
Ref | Expression |
---|---|
rsp2e | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe 3229 | . . 3 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) | |
2 | rspe 3229 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
3 | 1, 2 | sylan2 595 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
4 | 3 | 3impb 1113 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 ∈ wcel 2112 ∃wrex 3072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-12 2176 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1087 df-ex 1783 df-rex 3077 |
This theorem is referenced by: pell14qrdich 40229 |
Copyright terms: Public domain | W3C validator |