| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2181 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: rsp2e 3260 2rmorex 3737 2reurex 3743 ssiun2 5023 reusv2lem3 5370 fvelimad 6946 tfrlem9 8399 findcard2 9178 isinf 9268 isinfOLD 9269 findcard3 9290 findcard3OLD 9291 scott0 9900 ac6c4 10495 supaddc 12209 supadd 12210 supmul1 12211 supmul 12214 fsuppmapnn0fiub 14009 mreiincl 17608 restmetu 24509 bposlem3 27249 nosupbnd1 27678 nosupbnd2 27680 noinfbnd1 27693 noinfbnd2 27695 opphllem5 28730 pjpjpre 31400 atom1d 32334 iinabrex 32550 actfunsnf1o 34636 bnj1398 35065 cvmlift2lem12 35336 finminlem 36336 neibastop2lem 36378 iooelexlt 37380 relowlpssretop 37382 ralssiun 37425 disjlem18 38818 prtlem18 38895 pell14qrdich 42892 unielss 43242 eliuniin 45123 eliuniin2 45144 eliunid 45171 disjinfi 45216 iunmapsn 45241 infnsuprnmpt 45274 upbdrech 45334 limclner 45680 limsupre3uzlem 45764 climuzlem 45772 sge0iunmptlemre 46444 iundjiun 46489 meaiininclem 46515 isomenndlem 46559 ovnsubaddlem1 46599 vonioo 46711 vonicc 46714 smfaddlem1 46792 tworepnotupword 46915 f1oresf1o2 47320 |
| Copyright terms: Public domain | W3C validator |