Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2174 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-rex 3070 |
This theorem is referenced by: rsp2e 3238 2rmorex 3689 2reurex 3695 ssiun2 4977 reusv2lem3 5323 fvelimad 6836 tfrlem9 8216 findcard2 8947 isinf 9036 findcard2OLD 9056 findcard3 9057 scott0 9644 ac6c4 10237 supaddc 11942 supadd 11943 supmul1 11944 supmul 11947 fsuppmapnn0fiub 13711 mreiincl 17305 restmetu 23726 bposlem3 26434 opphllem5 27112 pjpjpre 29781 atom1d 30715 iinabrex 30908 actfunsnf1o 32584 bnj1398 33014 cvmlift2lem12 33276 nosupbnd1 33917 nosupbnd2 33919 noinfbnd1 33932 noinfbnd2 33934 finminlem 34507 neibastop2lem 34549 iooelexlt 35533 relowlpssretop 35535 ralssiun 35578 prtlem18 36891 pell14qrdich 40691 eliuniin 42649 eliuniin2 42669 eliunid 42699 disjinfi 42731 iunmapsn 42757 infnsuprnmpt 42796 upbdrech 42844 limclner 43192 limsupre3uzlem 43276 climuzlem 43284 sge0iunmptlemre 43953 iundjiun 43998 meaiininclem 44024 isomenndlem 44068 ovnsubaddlem1 44108 vonioo 44220 vonicc 44223 smfaddlem1 44298 f1oresf1o2 44783 tworepnotupword 46521 |
Copyright terms: Public domain | W3C validator |