| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2183 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2110 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2179 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-rex 3055 |
| This theorem is referenced by: rsp2e 3248 2rmorex 3711 2reurex 3717 ssiun2 4994 reusv2lem3 5336 fvelimad 6884 tfrlem9 8299 findcard2 9069 isinf 9144 findcard3 9162 scott0 9771 ac6c4 10364 supaddc 12081 supadd 12082 supmul1 12083 supmul 12086 fsuppmapnn0fiub 13890 mreiincl 17490 restmetu 24478 bposlem3 27217 nosupbnd1 27646 nosupbnd2 27648 noinfbnd1 27661 noinfbnd2 27663 opphllem5 28722 pjpjpre 31389 atom1d 32323 iinabrex 32539 actfunsnf1o 34607 bnj1398 35036 cvmlift2lem12 35326 finminlem 36331 neibastop2lem 36373 iooelexlt 37375 relowlpssretop 37377 ralssiun 37420 disjlem18 38817 prtlem18 38895 pell14qrdich 42881 unielss 43230 eliuniin 45115 eliuniin2 45136 eliunid 45163 disjinfi 45208 iunmapsn 45233 infnsuprnmpt 45266 upbdrech 45325 limclner 45668 limsupre3uzlem 45752 climuzlem 45760 sge0iunmptlemre 46432 iundjiun 46477 meaiininclem 46503 isomenndlem 46547 ovnsubaddlem1 46587 vonioo 46699 vonicc 46702 smfaddlem1 46780 f1oresf1o2 47301 |
| Copyright terms: Public domain | W3C validator |