![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2179 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-rex 3069 |
This theorem is referenced by: rsp2e 3276 2rmorex 3763 2reurex 3769 ssiun2 5052 reusv2lem3 5406 fvelimad 6976 tfrlem9 8424 findcard2 9203 isinf 9294 isinfOLD 9295 findcard3 9316 findcard3OLD 9317 scott0 9924 ac6c4 10519 supaddc 12233 supadd 12234 supmul1 12235 supmul 12238 fsuppmapnn0fiub 14029 mreiincl 17641 restmetu 24599 bposlem3 27345 nosupbnd1 27774 nosupbnd2 27776 noinfbnd1 27789 noinfbnd2 27791 opphllem5 28774 pjpjpre 31448 atom1d 32382 iinabrex 32589 actfunsnf1o 34598 bnj1398 35027 cvmlift2lem12 35299 finminlem 36301 neibastop2lem 36343 iooelexlt 37345 relowlpssretop 37347 ralssiun 37390 disjlem18 38782 prtlem18 38859 pell14qrdich 42857 unielss 43207 eliuniin 45039 eliuniin2 45060 eliunid 45090 disjinfi 45135 iunmapsn 45160 infnsuprnmpt 45195 upbdrech 45256 limclner 45607 limsupre3uzlem 45691 climuzlem 45699 sge0iunmptlemre 46371 iundjiun 46416 meaiininclem 46442 isomenndlem 46486 ovnsubaddlem1 46526 vonioo 46638 vonicc 46641 smfaddlem1 46719 tworepnotupword 46840 f1oresf1o2 47241 |
Copyright terms: Public domain | W3C validator |