| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2182 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rsp2e 3247 2rmorex 3716 2reurex 3722 ssiun2 4999 reusv2lem3 5342 fvelimad 6894 tfrlem9 8314 findcard2 9088 isinf 9165 isinfOLD 9166 findcard3 9187 findcard3OLD 9188 scott0 9801 ac6c4 10394 supaddc 12110 supadd 12111 supmul1 12112 supmul 12115 fsuppmapnn0fiub 13916 mreiincl 17516 restmetu 24474 bposlem3 27213 nosupbnd1 27642 nosupbnd2 27644 noinfbnd1 27657 noinfbnd2 27659 opphllem5 28714 pjpjpre 31381 atom1d 32315 iinabrex 32531 actfunsnf1o 34571 bnj1398 35000 cvmlift2lem12 35286 finminlem 36291 neibastop2lem 36333 iooelexlt 37335 relowlpssretop 37337 ralssiun 37380 disjlem18 38777 prtlem18 38855 pell14qrdich 42842 unielss 43191 eliuniin 45077 eliuniin2 45098 eliunid 45125 disjinfi 45170 iunmapsn 45195 infnsuprnmpt 45228 upbdrech 45287 limclner 45633 limsupre3uzlem 45717 climuzlem 45725 sge0iunmptlemre 46397 iundjiun 46442 meaiininclem 46468 isomenndlem 46512 ovnsubaddlem1 46552 vonioo 46664 vonicc 46667 smfaddlem1 46745 tworepnotupword 46868 f1oresf1o2 47276 |
| Copyright terms: Public domain | W3C validator |