Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2177 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1785 ∈ wcel 2109 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-rex 3071 |
This theorem is referenced by: rsp2e 3235 2rmorex 3692 2reurex 3698 ssiun2 4981 reusv2lem3 5326 fvelimad 6830 tfrlem9 8200 findcard2 8912 isinf 8997 findcard2OLD 9017 findcard3 9018 scott0 9628 ac6c4 10221 supaddc 11925 supadd 11926 supmul1 11927 supmul 11930 fsuppmapnn0fiub 13692 mreiincl 17286 restmetu 23707 bposlem3 26415 opphllem5 27093 pjpjpre 29760 atom1d 30694 iinabrex 30887 actfunsnf1o 32563 bnj1398 32993 cvmlift2lem12 33255 nosupbnd1 33896 nosupbnd2 33898 noinfbnd1 33911 noinfbnd2 33913 finminlem 34486 neibastop2lem 34528 iooelexlt 35512 relowlpssretop 35514 ralssiun 35557 prtlem18 36870 pell14qrdich 40671 eliuniin 42602 eliuniin2 42622 eliunid 42652 disjinfi 42684 iunmapsn 42710 infnsuprnmpt 42749 upbdrech 42798 limclner 43146 limsupre3uzlem 43230 climuzlem 43238 sge0iunmptlemre 43907 iundjiun 43952 meaiininclem 43978 isomenndlem 44022 ovnsubaddlem1 44062 vonioo 44174 vonicc 44177 smfaddlem1 44249 f1oresf1o2 44734 |
Copyright terms: Public domain | W3C validator |