| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2182 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: rsp2e 3256 2rmorex 3728 2reurex 3734 ssiun2 5014 reusv2lem3 5358 fvelimad 6931 tfrlem9 8356 findcard2 9134 isinf 9214 isinfOLD 9215 findcard3 9236 findcard3OLD 9237 scott0 9846 ac6c4 10441 supaddc 12157 supadd 12158 supmul1 12159 supmul 12162 fsuppmapnn0fiub 13963 mreiincl 17564 restmetu 24465 bposlem3 27204 nosupbnd1 27633 nosupbnd2 27635 noinfbnd1 27648 noinfbnd2 27650 opphllem5 28685 pjpjpre 31355 atom1d 32289 iinabrex 32505 actfunsnf1o 34602 bnj1398 35031 cvmlift2lem12 35308 finminlem 36313 neibastop2lem 36355 iooelexlt 37357 relowlpssretop 37359 ralssiun 37402 disjlem18 38799 prtlem18 38877 pell14qrdich 42864 unielss 43214 eliuniin 45100 eliuniin2 45121 eliunid 45148 disjinfi 45193 iunmapsn 45218 infnsuprnmpt 45251 upbdrech 45310 limclner 45656 limsupre3uzlem 45740 climuzlem 45748 sge0iunmptlemre 46420 iundjiun 46465 meaiininclem 46491 isomenndlem 46535 ovnsubaddlem1 46575 vonioo 46687 vonicc 46690 smfaddlem1 46768 tworepnotupword 46891 f1oresf1o2 47296 |
| Copyright terms: Public domain | W3C validator |