| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2182 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rsp2e 3255 2rmorex 3725 2reurex 3731 ssiun2 5011 reusv2lem3 5355 fvelimad 6928 tfrlem9 8353 findcard2 9128 isinf 9207 isinfOLD 9208 findcard3 9229 findcard3OLD 9230 scott0 9839 ac6c4 10434 supaddc 12150 supadd 12151 supmul1 12152 supmul 12155 fsuppmapnn0fiub 13956 mreiincl 17557 restmetu 24458 bposlem3 27197 nosupbnd1 27626 nosupbnd2 27628 noinfbnd1 27641 noinfbnd2 27643 opphllem5 28678 pjpjpre 31348 atom1d 32282 iinabrex 32498 actfunsnf1o 34595 bnj1398 35024 cvmlift2lem12 35301 finminlem 36306 neibastop2lem 36348 iooelexlt 37350 relowlpssretop 37352 ralssiun 37395 disjlem18 38792 prtlem18 38870 pell14qrdich 42857 unielss 43207 eliuniin 45093 eliuniin2 45114 eliunid 45141 disjinfi 45186 iunmapsn 45211 infnsuprnmpt 45244 upbdrech 45303 limclner 45649 limsupre3uzlem 45733 climuzlem 45741 sge0iunmptlemre 46413 iundjiun 46458 meaiininclem 46484 isomenndlem 46528 ovnsubaddlem1 46568 vonioo 46680 vonicc 46683 smfaddlem1 46761 tworepnotupword 46884 f1oresf1o2 47292 |
| Copyright terms: Public domain | W3C validator |