| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2186 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 3059 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-rex 3059 |
| This theorem is referenced by: rsp2e 3252 2rmorex 3710 2reurex 3716 ssiun2 5000 reusv2lem3 5342 fvelimad 6898 tfrlem9 8313 findcard2 9084 isinf 9159 findcard3 9177 scott0 9789 ac6c4 10382 supaddc 12099 supadd 12100 supmul1 12101 supmul 12104 fsuppmapnn0fiub 13908 mreiincl 17508 restmetu 24495 bposlem3 27234 nosupbnd1 27663 nosupbnd2 27665 noinfbnd1 27678 noinfbnd2 27680 opphllem5 28739 pjpjpre 31410 atom1d 32344 iinabrex 32560 actfunsnf1o 34628 bnj1398 35057 cvmlift2lem12 35369 finminlem 36373 neibastop2lem 36415 iooelexlt 37417 relowlpssretop 37419 ralssiun 37462 disjlem18 38908 prtlem18 38986 pell14qrdich 42976 unielss 43325 eliuniin 45210 eliuniin2 45231 eliunid 45258 disjinfi 45303 iunmapsn 45328 infnsuprnmpt 45361 upbdrech 45420 limclner 45763 limsupre3uzlem 45847 climuzlem 45855 sge0iunmptlemre 46527 iundjiun 46572 meaiininclem 46598 isomenndlem 46642 ovnsubaddlem1 46682 vonioo 46794 vonicc 46797 smfaddlem1 46875 f1oresf1o2 47405 |
| Copyright terms: Public domain | W3C validator |