| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2181 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: rsp2e 3260 2rmorex 3737 2reurex 3743 ssiun2 5023 reusv2lem3 5370 fvelimad 6945 tfrlem9 8397 findcard2 9176 isinf 9266 isinfOLD 9267 findcard3 9288 findcard3OLD 9289 scott0 9898 ac6c4 10493 supaddc 12207 supadd 12208 supmul1 12209 supmul 12212 fsuppmapnn0fiub 14007 mreiincl 17606 restmetu 24507 bposlem3 27247 nosupbnd1 27676 nosupbnd2 27678 noinfbnd1 27691 noinfbnd2 27693 opphllem5 28676 pjpjpre 31346 atom1d 32280 iinabrex 32496 actfunsnf1o 34582 bnj1398 35011 cvmlift2lem12 35282 finminlem 36282 neibastop2lem 36324 iooelexlt 37326 relowlpssretop 37328 ralssiun 37371 disjlem18 38764 prtlem18 38841 pell14qrdich 42839 unielss 43189 eliuniin 45071 eliuniin2 45092 eliunid 45119 disjinfi 45164 iunmapsn 45189 infnsuprnmpt 45222 upbdrech 45282 limclner 45628 limsupre3uzlem 45712 climuzlem 45720 sge0iunmptlemre 46392 iundjiun 46437 meaiininclem 46463 isomenndlem 46507 ovnsubaddlem1 46547 vonioo 46659 vonicc 46662 smfaddlem1 46740 tworepnotupword 46863 f1oresf1o2 47268 |
| Copyright terms: Public domain | W3C validator |