Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2176 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-rex 3069 |
This theorem is referenced by: rsp2e 3233 2rmorex 3684 2reurex 3690 ssiun2 4973 reusv2lem3 5318 fvelimad 6818 tfrlem9 8187 findcard2 8909 isinf 8965 findcard2OLD 8986 findcard3 8987 scott0 9575 ac6c4 10168 supaddc 11872 supadd 11873 supmul1 11874 supmul 11877 fsuppmapnn0fiub 13639 mreiincl 17222 restmetu 23632 bposlem3 26339 opphllem5 27016 pjpjpre 29682 atom1d 30616 iinabrex 30809 actfunsnf1o 32484 bnj1398 32914 cvmlift2lem12 33176 nosupbnd1 33844 nosupbnd2 33846 noinfbnd1 33859 noinfbnd2 33861 finminlem 34434 neibastop2lem 34476 iooelexlt 35460 relowlpssretop 35462 ralssiun 35505 prtlem18 36818 pell14qrdich 40607 eliuniin 42538 eliuniin2 42558 eliunid 42588 disjinfi 42620 iunmapsn 42646 infnsuprnmpt 42685 upbdrech 42734 limclner 43082 limsupre3uzlem 43166 climuzlem 43174 sge0iunmptlemre 43843 iundjiun 43888 meaiininclem 43914 isomenndlem 43958 ovnsubaddlem1 43998 vonioo 44110 vonicc 44113 smfaddlem1 44185 f1oresf1o2 44670 |
Copyright terms: Public domain | W3C validator |