![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspe | Structured version Visualization version GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2182 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-rex 3077 |
This theorem is referenced by: rsp2e 3284 2rmorex 3776 2reurex 3782 ssiun2 5070 reusv2lem3 5418 fvelimad 6989 tfrlem9 8441 findcard2 9230 isinf 9323 isinfOLD 9324 findcard3 9346 findcard3OLD 9347 scott0 9955 ac6c4 10550 supaddc 12262 supadd 12263 supmul1 12264 supmul 12267 fsuppmapnn0fiub 14042 mreiincl 17654 restmetu 24604 bposlem3 27348 nosupbnd1 27777 nosupbnd2 27779 noinfbnd1 27792 noinfbnd2 27794 opphllem5 28777 pjpjpre 31451 atom1d 32385 iinabrex 32591 actfunsnf1o 34581 bnj1398 35010 cvmlift2lem12 35282 finminlem 36284 neibastop2lem 36326 iooelexlt 37328 relowlpssretop 37330 ralssiun 37373 disjlem18 38756 prtlem18 38833 pell14qrdich 42825 unielss 43179 eliuniin 45001 eliuniin2 45022 eliunid 45052 disjinfi 45099 iunmapsn 45124 infnsuprnmpt 45159 upbdrech 45220 limclner 45572 limsupre3uzlem 45656 climuzlem 45664 sge0iunmptlemre 46336 iundjiun 46381 meaiininclem 46407 isomenndlem 46451 ovnsubaddlem1 46491 vonioo 46603 vonicc 46606 smfaddlem1 46684 tworepnotupword 46805 f1oresf1o2 47206 |
Copyright terms: Public domain | W3C validator |