Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrdich Structured version   Visualization version   GIF version

Theorem pell14qrdich 37959
Description: A positive Pell solution is either in the first quadrant, or its reciprocal is. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrdich ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))

Proof of Theorem pell14qrdich
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell14qr 37939 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
21biimpa 462 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
3 simplrr 763 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℤ)
4 elznn0 11598 . . . . . . . 8 (𝑏 ∈ ℤ ↔ (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)))
53, 4sylib 208 . . . . . . 7 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑏 ∈ ℝ ∧ (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0)))
65simprd 483 . . . . . 6 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0))
7 simplr 752 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → 𝐴 ∈ ℝ)
87ad2antrr 705 . . . . . . . . . 10 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ 𝑏 ∈ ℕ0) → 𝐴 ∈ ℝ)
9 simprl 754 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → 𝑎 ∈ ℕ0)
109ad2antrr 705 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ 𝑏 ∈ ℕ0) → 𝑎 ∈ ℕ0)
11 simpr 471 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ∈ ℕ0)
12 simplr 752 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ 𝑏 ∈ ℕ0) → (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
13 rsp2e 3152 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
1410, 11, 12, 13syl3anc 1476 . . . . . . . . . 10 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ 𝑏 ∈ ℕ0) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
158, 14jca 501 . . . . . . . . 9 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ 𝑏 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
1615ex 397 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑏 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
17 elpell1qr 37937 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
1817ad4antr 712 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
1916, 18sylibrd 249 . . . . . . 7 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑏 ∈ ℕ0𝐴 ∈ (Pell1QR‘𝐷)))
207ad2antrr 705 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → 𝐴 ∈ ℝ)
21 pell14qrne0 37948 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ≠ 0)
2221ad4antr 712 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → 𝐴 ≠ 0)
2320, 22rereccld 11057 . . . . . . . . . 10 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → (1 / 𝐴) ∈ ℝ)
249ad2antrr 705 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → 𝑎 ∈ ℕ0)
25 simpr 471 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → -𝑏 ∈ ℕ0)
26 pell14qrre 37947 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
2726recnd 10273 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
2827, 21reccld 10999 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 / 𝐴) ∈ ℂ)
2928ad3antrrr 709 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) ∈ ℂ)
30 nn0cn 11508 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
3130ad2antrl 707 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
32 eldifi 3883 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
3332nncnd 11241 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
3433ad3antrrr 709 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → 𝐷 ∈ ℂ)
3534sqrtcld 14383 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → (√‘𝐷) ∈ ℂ)
36 zcn 11588 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3736ad2antll 708 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
3837negcld 10584 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → -𝑏 ∈ ℂ)
3935, 38mulcld 10265 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → ((√‘𝐷) · -𝑏) ∈ ℂ)
4031, 39addcld 10264 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → (𝑎 + ((√‘𝐷) · -𝑏)) ∈ ℂ)
4140adantr 466 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) ∈ ℂ)
4227ad3antrrr 709 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℂ)
4321ad3antrrr 709 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0)
4427, 21recidd 11001 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · (1 / 𝐴)) = 1)
4544ad3antrrr 709 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = 1)
46 simprr 756 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
4745, 46eqtr4d 2808 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
4831adantr 466 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) → 𝑎 ∈ ℂ)
4935, 37mulcld 10265 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → ((√‘𝐷) · 𝑏) ∈ ℂ)
5049adantr 466 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) → ((√‘𝐷) · 𝑏) ∈ ℂ)
51 subsq 13178 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℂ ∧ ((√‘𝐷) · 𝑏) ∈ ℂ) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
5248, 50, 51syl2anc 573 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
5335, 37sqmuld 13226 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → (((√‘𝐷) · 𝑏)↑2) = (((√‘𝐷)↑2) · (𝑏↑2)))
5434sqsqrtd 14385 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → ((√‘𝐷)↑2) = 𝐷)
5554oveq1d 6810 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → (((√‘𝐷)↑2) · (𝑏↑2)) = (𝐷 · (𝑏↑2)))
5653, 55eqtr2d 2806 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → (𝐷 · (𝑏↑2)) = (((√‘𝐷) · 𝑏)↑2))
5756oveq2d 6811 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)))
5857adantr 466 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)))
59 simpr 471 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
6035, 37mulneg2d 10689 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → ((√‘𝐷) · -𝑏) = -((√‘𝐷) · 𝑏))
6160oveq2d 6811 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 + -((√‘𝐷) · 𝑏)))
62 negsub 10534 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℂ ∧ ((√‘𝐷) · 𝑏) ∈ ℂ) → (𝑎 + -((√‘𝐷) · 𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏)))
6362eqcomd 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℂ ∧ ((√‘𝐷) · 𝑏) ∈ ℂ) → (𝑎 − ((√‘𝐷) · 𝑏)) = (𝑎 + -((√‘𝐷) · 𝑏)))
6431, 49, 63syl2anc 573 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → (𝑎 − ((√‘𝐷) · 𝑏)) = (𝑎 + -((√‘𝐷) · 𝑏)))
6561, 64eqtr4d 2808 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏)))
6665adantr 466 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏)))
6759, 66oveq12d 6813 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) → (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
6852, 58, 673eqtr4d 2815 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))))
6968adantrr 696 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))))
7047, 69eqtrd 2805 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))))
7129, 41, 42, 43, 70mulcanad 10867 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)))
7271adantr 466 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)))
7337ad2antrr 705 . . . . . . . . . . . . . . . . 17 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → 𝑏 ∈ ℂ)
74 sqneg 13129 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → (-𝑏↑2) = (𝑏↑2))
7675oveq2d 6811 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → (𝐷 · (-𝑏↑2)) = (𝐷 · (𝑏↑2)))
7776oveq2d 6811 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
78 simplrr 763 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
7977, 78eqtrd 2805 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)
8072, 79jca 501 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))
81 oveq2 6803 . . . . . . . . . . . . . . . 16 (𝑐 = -𝑏 → ((√‘𝐷) · 𝑐) = ((√‘𝐷) · -𝑏))
8281oveq2d 6811 . . . . . . . . . . . . . . 15 (𝑐 = -𝑏 → (𝑎 + ((√‘𝐷) · 𝑐)) = (𝑎 + ((√‘𝐷) · -𝑏)))
8382eqeq2d 2781 . . . . . . . . . . . . . 14 (𝑐 = -𝑏 → ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ↔ (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏))))
84 oveq1 6802 . . . . . . . . . . . . . . . . 17 (𝑐 = -𝑏 → (𝑐↑2) = (-𝑏↑2))
8584oveq2d 6811 . . . . . . . . . . . . . . . 16 (𝑐 = -𝑏 → (𝐷 · (𝑐↑2)) = (𝐷 · (-𝑏↑2)))
8685oveq2d 6811 . . . . . . . . . . . . . . 15 (𝑐 = -𝑏 → ((𝑎↑2) − (𝐷 · (𝑐↑2))) = ((𝑎↑2) − (𝐷 · (-𝑏↑2))))
8786eqeq1d 2773 . . . . . . . . . . . . . 14 (𝑐 = -𝑏 → (((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))
8883, 87anbi12d 616 . . . . . . . . . . . . 13 (𝑐 = -𝑏 → (((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1) ↔ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)))
8988rspcev 3460 . . . . . . . . . . . 12 ((-𝑏 ∈ ℕ0 ∧ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1))
9025, 80, 89syl2anc 573 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → ∃𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1))
91 rspe 3151 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0 ∧ ∃𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1))
9224, 90, 91syl2anc 573 . . . . . . . . . 10 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → ∃𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1))
9323, 92jca 501 . . . . . . . . 9 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) ∧ -𝑏 ∈ ℕ0) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1)))
9493ex 397 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏 ∈ ℕ0 → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1))))
95 elpell1qr 37937 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1 / 𝐴) ∈ (Pell1QR‘𝐷) ↔ ((1 / 𝐴) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1))))
9695ad4antr 712 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((1 / 𝐴) ∈ (Pell1QR‘𝐷) ↔ ((1 / 𝐴) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑐)) ∧ ((𝑎↑2) − (𝐷 · (𝑐↑2))) = 1))))
9794, 96sylibrd 249 . . . . . . 7 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏 ∈ ℕ0 → (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
9819, 97orim12d 949 . . . . . 6 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑏 ∈ ℕ0 ∨ -𝑏 ∈ ℕ0) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷))))
996, 98mpd 15 . . . . 5 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
10099ex 397 . . . 4 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷))))
101100rexlimdvva 3186 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷))))
102101expimpd 441 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷))))
1032, 102mpd 15 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cdif 3720  cfv 6030  (class class class)co 6795  cc 10139  cr 10140  0cc0 10141  1c1 10142   + caddc 10144   · cmul 10146  cmin 10471  -cneg 10472   / cdiv 10889  cn 11225  2c2 11275  0cn0 11498  cz 11583  cexp 13066  csqrt 14180  NNcsquarenn 37926  Pell1QRcpell1qr 37927  Pell14QRcpell14qr 37929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-sup 8507  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-pell1qr 37932  df-pell14qr 37933  df-pell1234qr 37934
This theorem is referenced by:  elpell1qr2  37962
  Copyright terms: Public domain W3C validator