Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrdich Structured version   Visualization version   GIF version

Theorem pell14qrdich 41592
Description: A positive Pell solution is either in the first quadrant, or its reciprocal is. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrdich ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โˆจ (1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท)))

Proof of Theorem pell14qrdich
Dummy variables ๐‘Ž ๐‘ ๐‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell14qr 41572 . . 3 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐ด โˆˆ (Pell14QRโ€˜๐ท) โ†” (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
21biimpa 477 . 2 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)))
3 simplrr 776 . . . . . . . 8 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐‘ โˆˆ โ„ค)
4 elznn0 12569 . . . . . . . 8 (๐‘ โˆˆ โ„ค โ†” (๐‘ โˆˆ โ„ โˆง (๐‘ โˆˆ โ„•0 โˆจ -๐‘ โˆˆ โ„•0)))
53, 4sylib 217 . . . . . . 7 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘ โˆˆ โ„ โˆง (๐‘ โˆˆ โ„•0 โˆจ -๐‘ โˆˆ โ„•0)))
65simprd 496 . . . . . 6 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘ โˆˆ โ„•0 โˆจ -๐‘ โˆˆ โ„•0))
7 simplr 767 . . . . . . . . . . 11 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ๐ด โˆˆ โ„)
87ad2antrr 724 . . . . . . . . . 10 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐ด โˆˆ โ„)
9 simprl 769 . . . . . . . . . . . 12 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ๐‘Ž โˆˆ โ„•0)
109ad2antrr 724 . . . . . . . . . . 11 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘Ž โˆˆ โ„•0)
11 simpr 485 . . . . . . . . . . 11 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„•0)
12 simplr 767 . . . . . . . . . . 11 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))
13 rsp2e 3275 . . . . . . . . . . 11 ((๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))
1410, 11, 12, 13syl3anc 1371 . . . . . . . . . 10 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง ๐‘ โˆˆ โ„•0) โ†’ โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))
158, 14jca 512 . . . . . . . . 9 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)))
1615ex 413 . . . . . . . 8 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
17 elpell1qr 41570 . . . . . . . . 9 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โ†” (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
1817ad4antr 730 . . . . . . . 8 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โ†” (๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
1916, 18sylibrd 258 . . . . . . 7 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘ โˆˆ โ„•0 โ†’ ๐ด โˆˆ (Pell1QRโ€˜๐ท)))
207ad2antrr 724 . . . . . . . . . . 11 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ๐ด โˆˆ โ„)
21 pell14qrne0 41581 . . . . . . . . . . . 12 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ ๐ด โ‰  0)
2221ad4antr 730 . . . . . . . . . . 11 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ๐ด โ‰  0)
2320, 22rereccld 12037 . . . . . . . . . 10 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ (1 / ๐ด) โˆˆ โ„)
249ad2antrr 724 . . . . . . . . . . 11 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ๐‘Ž โˆˆ โ„•0)
25 simpr 485 . . . . . . . . . . . 12 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ -๐‘ โˆˆ โ„•0)
26 pell14qrre 41580 . . . . . . . . . . . . . . . . . 18 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ ๐ด โˆˆ โ„)
2726recnd 11238 . . . . . . . . . . . . . . . . 17 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ ๐ด โˆˆ โ„‚)
2827, 21reccld 11979 . . . . . . . . . . . . . . . 16 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ (1 / ๐ด) โˆˆ โ„‚)
2928ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (1 / ๐ด) โˆˆ โ„‚)
30 nn0cn 12478 . . . . . . . . . . . . . . . . . 18 (๐‘Ž โˆˆ โ„•0 โ†’ ๐‘Ž โˆˆ โ„‚)
3130ad2antrl 726 . . . . . . . . . . . . . . . . 17 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ๐‘Ž โˆˆ โ„‚)
32 eldifi 4125 . . . . . . . . . . . . . . . . . . . . 21 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ๐ท โˆˆ โ„•)
3332nncnd 12224 . . . . . . . . . . . . . . . . . . . 20 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ๐ท โˆˆ โ„‚)
3433ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ๐ท โˆˆ โ„‚)
3534sqrtcld 15380 . . . . . . . . . . . . . . . . . 18 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ (โˆšโ€˜๐ท) โˆˆ โ„‚)
36 zcn 12559 . . . . . . . . . . . . . . . . . . . 20 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„‚)
3736ad2antll 727 . . . . . . . . . . . . . . . . . . 19 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ๐‘ โˆˆ โ„‚)
3837negcld 11554 . . . . . . . . . . . . . . . . . 18 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ -๐‘ โˆˆ โ„‚)
3935, 38mulcld 11230 . . . . . . . . . . . . . . . . 17 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((โˆšโ€˜๐ท) ยท -๐‘) โˆˆ โ„‚)
4031, 39addcld 11229 . . . . . . . . . . . . . . . 16 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆˆ โ„‚)
4140adantr 481 . . . . . . . . . . . . . . 15 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆˆ โ„‚)
4227ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด โˆˆ โ„‚)
4321ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ๐ด โ‰  0)
4427, 21recidd 11981 . . . . . . . . . . . . . . . . . 18 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ (๐ด ยท (1 / ๐ด)) = 1)
4544ad3antrrr 728 . . . . . . . . . . . . . . . . 17 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (1 / ๐ด)) = 1)
46 simprr 771 . . . . . . . . . . . . . . . . 17 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)
4745, 46eqtr4d 2775 . . . . . . . . . . . . . . . 16 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (1 / ๐ด)) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))))
4831adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))) โ†’ ๐‘Ž โˆˆ โ„‚)
4935, 37mulcld 11230 . . . . . . . . . . . . . . . . . . . 20 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚)
5049adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))) โ†’ ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚)
51 subsq 14170 . . . . . . . . . . . . . . . . . . 19 ((๐‘Ž โˆˆ โ„‚ โˆง ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚) โ†’ ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
5248, 50, 51syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))) โ†’ ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
5335, 37sqmuld 14119 . . . . . . . . . . . . . . . . . . . . 21 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2) = (((โˆšโ€˜๐ท)โ†‘2) ยท (๐‘โ†‘2)))
5434sqsqrtd 15382 . . . . . . . . . . . . . . . . . . . . . 22 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((โˆšโ€˜๐ท)โ†‘2) = ๐ท)
5554oveq1d 7420 . . . . . . . . . . . . . . . . . . . . 21 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ (((โˆšโ€˜๐ท)โ†‘2) ยท (๐‘โ†‘2)) = (๐ท ยท (๐‘โ†‘2)))
5653, 55eqtr2d 2773 . . . . . . . . . . . . . . . . . . . 20 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐ท ยท (๐‘โ†‘2)) = (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2))
5756oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)))
5857adantr 481 . . . . . . . . . . . . . . . . . 18 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (((โˆšโ€˜๐ท) ยท ๐‘)โ†‘2)))
59 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))) โ†’ ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)))
6035, 37mulneg2d 11664 . . . . . . . . . . . . . . . . . . . . . 22 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((โˆšโ€˜๐ท) ยท -๐‘) = -((โˆšโ€˜๐ท) ยท ๐‘))
6160oveq2d 7421 . . . . . . . . . . . . . . . . . . . . 21 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) = (๐‘Ž + -((โˆšโ€˜๐ท) ยท ๐‘)))
62 negsub 11504 . . . . . . . . . . . . . . . . . . . . . . 23 ((๐‘Ž โˆˆ โ„‚ โˆง ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚) โ†’ (๐‘Ž + -((โˆšโ€˜๐ท) ยท ๐‘)) = (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)))
6362eqcomd 2738 . . . . . . . . . . . . . . . . . . . . . 22 ((๐‘Ž โˆˆ โ„‚ โˆง ((โˆšโ€˜๐ท) ยท ๐‘) โˆˆ โ„‚) โ†’ (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)) = (๐‘Ž + -((โˆšโ€˜๐ท) ยท ๐‘)))
6431, 49, 63syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)) = (๐‘Ž + -((โˆšโ€˜๐ท) ยท ๐‘)))
6561, 64eqtr4d 2775 . . . . . . . . . . . . . . . . . . . 20 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) = (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)))
6665adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))) โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) = (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘)))
6759, 66oveq12d 7423 . . . . . . . . . . . . . . . . . 18 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))) โ†’ (๐ด ยท (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))) = ((๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) ยท (๐‘Ž โˆ’ ((โˆšโ€˜๐ท) ยท ๐‘))))
6852, 58, 673eqtr4d 2782 . . . . . . . . . . . . . . . . 17 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง ๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘))) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = (๐ด ยท (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))))
6968adantrr 715 . . . . . . . . . . . . . . . 16 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = (๐ด ยท (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))))
7047, 69eqtrd 2772 . . . . . . . . . . . . . . 15 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด ยท (1 / ๐ด)) = (๐ด ยท (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))))
7129, 41, 42, 43, 70mulcanad 11845 . . . . . . . . . . . . . 14 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)))
7271adantr 481 . . . . . . . . . . . . 13 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)))
7337ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„‚)
74 sqneg 14077 . . . . . . . . . . . . . . . . 17 (๐‘ โˆˆ โ„‚ โ†’ (-๐‘โ†‘2) = (๐‘โ†‘2))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ (-๐‘โ†‘2) = (๐‘โ†‘2))
7675oveq2d 7421 . . . . . . . . . . . . . . 15 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ (๐ท ยท (-๐‘โ†‘2)) = (๐ท ยท (๐‘โ†‘2)))
7776oveq2d 7421 . . . . . . . . . . . . . 14 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))))
78 simplrr 776 . . . . . . . . . . . . . 14 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)
7977, 78eqtrd 2772 . . . . . . . . . . . . 13 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)
8072, 79jca 512 . . . . . . . . . . . 12 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1))
81 oveq2 7413 . . . . . . . . . . . . . . . 16 (๐‘ = -๐‘ โ†’ ((โˆšโ€˜๐ท) ยท ๐‘) = ((โˆšโ€˜๐ท) ยท -๐‘))
8281oveq2d 7421 . . . . . . . . . . . . . . 15 (๐‘ = -๐‘ โ†’ (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)))
8382eqeq2d 2743 . . . . . . . . . . . . . 14 (๐‘ = -๐‘ โ†’ ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โ†” (1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘))))
84 oveq1 7412 . . . . . . . . . . . . . . . . 17 (๐‘ = -๐‘ โ†’ (๐‘โ†‘2) = (-๐‘โ†‘2))
8584oveq2d 7421 . . . . . . . . . . . . . . . 16 (๐‘ = -๐‘ โ†’ (๐ท ยท (๐‘โ†‘2)) = (๐ท ยท (-๐‘โ†‘2)))
8685oveq2d 7421 . . . . . . . . . . . . . . 15 (๐‘ = -๐‘ โ†’ ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))))
8786eqeq1d 2734 . . . . . . . . . . . . . 14 (๐‘ = -๐‘ โ†’ (((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1 โ†” ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1))
8883, 87anbi12d 631 . . . . . . . . . . . . 13 (๐‘ = -๐‘ โ†’ (((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†” ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)))
8988rspcev 3612 . . . . . . . . . . . 12 ((-๐‘ โˆˆ โ„•0 โˆง ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท -๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (-๐‘โ†‘2))) = 1)) โ†’ โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))
9025, 80, 89syl2anc 584 . . . . . . . . . . 11 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))
91 rspe 3246 . . . . . . . . . . 11 ((๐‘Ž โˆˆ โ„•0 โˆง โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))
9224, 90, 91syl2anc 584 . . . . . . . . . 10 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))
9323, 92jca 512 . . . . . . . . 9 ((((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โˆง -๐‘ โˆˆ โ„•0) โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)))
9493ex 413 . . . . . . . 8 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (-๐‘ โˆˆ โ„•0 โ†’ ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
95 elpell1qr 41570 . . . . . . . . 9 (๐ท โˆˆ (โ„• โˆ– โ—ปNN) โ†’ ((1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท) โ†” ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
9695ad4antr 730 . . . . . . . 8 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท) โ†” ((1 / ๐ด) โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„•0 ((1 / ๐ด) = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1))))
9794, 96sylibrd 258 . . . . . . 7 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (-๐‘ โˆˆ โ„•0 โ†’ (1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท)))
9819, 97orim12d 963 . . . . . 6 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ ((๐‘ โˆˆ โ„•0 โˆจ -๐‘ โˆˆ โ„•0) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โˆจ (1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท))))
996, 98mpd 15 . . . . 5 (((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โˆง (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โˆจ (1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท)))
10099ex 413 . . . 4 ((((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โˆง (๐‘Ž โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โˆจ (1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท))))
101100rexlimdvva 3211 . . 3 (((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โˆง ๐ด โˆˆ โ„) โ†’ (โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โˆจ (1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท))))
102101expimpd 454 . 2 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ ((๐ด โˆˆ โ„ โˆง โˆƒ๐‘Ž โˆˆ โ„•0 โˆƒ๐‘ โˆˆ โ„ค (๐ด = (๐‘Ž + ((โˆšโ€˜๐ท) ยท ๐‘)) โˆง ((๐‘Žโ†‘2) โˆ’ (๐ท ยท (๐‘โ†‘2))) = 1)) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โˆจ (1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท))))
1032, 102mpd 15 1 ((๐ท โˆˆ (โ„• โˆ– โ—ปNN) โˆง ๐ด โˆˆ (Pell14QRโ€˜๐ท)) โ†’ (๐ด โˆˆ (Pell1QRโ€˜๐ท) โˆจ (1 / ๐ด) โˆˆ (Pell1QRโ€˜๐ท)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆจ wo 845   = wceq 1541   โˆˆ wcel 2106   โ‰  wne 2940  โˆƒwrex 3070   โˆ– cdif 3944  โ€˜cfv 6540  (class class class)co 7405  โ„‚cc 11104  โ„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   ยท cmul 11111   โˆ’ cmin 11440  -cneg 11441   / cdiv 11867  โ„•cn 12208  2c2 12263  โ„•0cn0 12468  โ„คcz 12554  โ†‘cexp 14023  โˆšcsqrt 15176  โ—ปNNcsquarenn 41559  Pell1QRcpell1qr 41560  Pell14QRcpell14qr 41562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-pell1qr 41565  df-pell14qr 41566  df-pell1234qr 41567
This theorem is referenced by:  elpell1qr2  41595
  Copyright terms: Public domain W3C validator