MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rsp2 Structured version   Visualization version   GIF version

Theorem rsp2 3283
Description: Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997.)
Assertion
Ref Expression
rsp2 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))

Proof of Theorem rsp2
StepHypRef Expression
1 rsp 3253 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 rsp 3253 . . 3 (∀𝑦𝐵 𝜑 → (𝑦𝐵𝜑))
31, 2syl6 35 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → (𝑦𝐵𝜑)))
43impd 410 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-ral 3068
This theorem is referenced by:  ralcom2  3385  disjxiun  5163  mpocurryd  8310  cmncom  19840  cnmpt21  23700  cnmpt2t  23702  cnmpt22  23703  cnmptcom  23707  frgrwopreglem5ALT  30354  htthlem  30949  qsidomlem2  33446  cplgredgex  35088  disjlem14  38754  prtlem14  38830  islptre  45540  sprsymrelfolem2  47367
  Copyright terms: Public domain W3C validator