| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rsp2 | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997.) |
| Ref | Expression |
|---|---|
| rsp2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rsp 3223 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) | |
| 2 | rsp 3223 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → 𝜑)) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) |
| 4 | 3 | impd 410 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: ralcom2 3348 disjxiun 5099 mpocurryd 8225 cmncom 19712 cnmpt21 23591 cnmpt2t 23593 cnmpt22 23594 cnmptcom 23598 frgrwopreglem5ALT 30301 htthlem 30896 qsidomlem2 33417 cplgredgex 35101 disjlem14 38783 prtlem14 38860 islptre 45610 sprsymrelfolem2 47487 |
| Copyright terms: Public domain | W3C validator |