MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rsp2 Structured version   Visualization version   GIF version

Theorem rsp2 3274
Description: Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997.)
Assertion
Ref Expression
rsp2 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))

Proof of Theorem rsp2
StepHypRef Expression
1 rsp 3244 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 rsp 3244 . . 3 (∀𝑦𝐵 𝜑 → (𝑦𝐵𝜑))
31, 2syl6 35 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → (𝑦𝐵𝜑)))
43impd 411 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-ral 3062
This theorem is referenced by:  ralcom2  3373  disjxiun  5145  mpocurryd  8253  cmncom  19665  cnmpt21  23174  cnmpt2t  23176  cnmpt22  23177  cnmptcom  23181  frgrwopreglem5ALT  29572  htthlem  30165  qsidomlem2  32567  cplgredgex  34106  disjlem14  37663  prtlem14  37739  islptre  44325  sprsymrelfolem2  46151
  Copyright terms: Public domain W3C validator