![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rsp2 | Structured version Visualization version GIF version |
Description: Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997.) |
Ref | Expression |
---|---|
rsp2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rsp 3253 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) | |
2 | rsp 3253 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → 𝜑)) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) |
4 | 3 | impd 410 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 |
This theorem is referenced by: ralcom2 3385 disjxiun 5163 mpocurryd 8310 cmncom 19840 cnmpt21 23700 cnmpt2t 23702 cnmpt22 23703 cnmptcom 23707 frgrwopreglem5ALT 30354 htthlem 30949 qsidomlem2 33446 cplgredgex 35088 disjlem14 38754 prtlem14 38830 islptre 45540 sprsymrelfolem2 47367 |
Copyright terms: Public domain | W3C validator |