MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rsp2 Structured version   Visualization version   GIF version

Theorem rsp2 3254
Description: Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997.)
Assertion
Ref Expression
rsp2 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))

Proof of Theorem rsp2
StepHypRef Expression
1 rsp 3225 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 rsp 3225 . . 3 (∀𝑦𝐵 𝜑 → (𝑦𝐵𝜑))
31, 2syl6 35 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → (𝑦𝐵𝜑)))
43impd 410 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3045
This theorem is referenced by:  ralcom2  3351  disjxiun  5104  mpocurryd  8248  cmncom  19728  cnmpt21  23558  cnmpt2t  23560  cnmpt22  23561  cnmptcom  23565  frgrwopreglem5ALT  30251  htthlem  30846  qsidomlem2  33424  cplgredgex  35108  disjlem14  38790  prtlem14  38867  islptre  45617  sprsymrelfolem2  47494
  Copyright terms: Public domain W3C validator