MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspw Structured version   Visualization version   GIF version

Theorem rspw 3223
Description: Restricted specialization. Weak version of rsp 3234, requiring ax-8 2111, but not ax-12 2178. (Contributed by GG, 3-Oct-2024.)
Hypothesis
Ref Expression
rspw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rspw (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rspw
StepHypRef Expression
1 df-ral 3053 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 eleq1w 2818 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3 rspw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
54spw 2034 . 2 (∀𝑥(𝑥𝐴𝜑) → (𝑥𝐴𝜑))
61, 5sylbi 217 1 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2810  df-ral 3053
This theorem is referenced by:  solin  5593
  Copyright terms: Public domain W3C validator