MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  solin Structured version   Visualization version   GIF version

Theorem solin 5576
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
solin ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))

Proof of Theorem solin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5113 . . . . 5 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
2 eqeq1 2734 . . . . 5 (𝑥 = 𝐵 → (𝑥 = 𝑦𝐵 = 𝑦))
3 breq2 5114 . . . . 5 (𝑥 = 𝐵 → (𝑦𝑅𝑥𝑦𝑅𝐵))
41, 2, 33orbi123d 1437 . . . 4 (𝑥 = 𝐵 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)))
54imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵))))
6 breq2 5114 . . . . 5 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
7 eqeq2 2742 . . . . 5 (𝑦 = 𝐶 → (𝐵 = 𝑦𝐵 = 𝐶))
8 breq1 5113 . . . . 5 (𝑦 = 𝐶 → (𝑦𝑅𝐵𝐶𝑅𝐵))
96, 7, 83orbi123d 1437 . . . 4 (𝑦 = 𝐶 → ((𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵) ↔ (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
109imbi2d 340 . . 3 (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))))
11 df-so 5550 . . . . 5 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
12 breq1 5113 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
13 equequ1 2025 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
14 breq2 5114 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
1512, 13, 143orbi123d 1437 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑧𝑅𝑦𝑧 = 𝑦𝑦𝑅𝑧)))
1615ralbidv 3157 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑧𝑅𝑦𝑧 = 𝑦𝑦𝑅𝑧)))
1716rspw 3215 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝐴 → ∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
18 breq2 5114 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥𝑅𝑦𝑥𝑅𝑧))
19 equequ2 2026 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
20 breq1 5113 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
2118, 19, 203orbi123d 1437 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
2221rspw 3215 . . . . . . 7 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑦𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2317, 22syl6 35 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝐴 → (𝑦𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
2423impd 410 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2511, 24simplbiim 504 . . . 4 (𝑅 Or 𝐴 → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2625com12 32 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
275, 10, 26vtocl2ga 3547 . 2 ((𝐵𝐴𝐶𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
2827impcom 407 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110   Po wpo 5547   Or wor 5548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-so 5550
This theorem is referenced by:  sotric  5579  sotrieq  5580  somo  5588  wecmpep  5633  sorpssi  7708  soxp  8111  infsupprpr  9464  wemaplem2  9507  fpwwe2lem11  10601  fpwwe2lem12  10602  lttri4  11265  xmullem  13231  xmulasslem  13252  noresle  27616  nosupbnd1lem6  27632  noinfbnd1lem6  27647  sltlin  27668  orngsqr  33289  weiunso  36461  fin2so  37608  fnwe2lem3  43048  prproropf1olem4  47511
  Copyright terms: Public domain W3C validator