MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  solin Structured version   Visualization version   GIF version

Theorem solin 5554
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
solin ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))

Proof of Theorem solin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5096 . . . . 5 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
2 eqeq1 2737 . . . . 5 (𝑥 = 𝐵 → (𝑥 = 𝑦𝐵 = 𝑦))
3 breq2 5097 . . . . 5 (𝑥 = 𝐵 → (𝑦𝑅𝑥𝑦𝑅𝐵))
41, 2, 33orbi123d 1437 . . . 4 (𝑥 = 𝐵 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)))
54imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵))))
6 breq2 5097 . . . . 5 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
7 eqeq2 2745 . . . . 5 (𝑦 = 𝐶 → (𝐵 = 𝑦𝐵 = 𝐶))
8 breq1 5096 . . . . 5 (𝑦 = 𝐶 → (𝑦𝑅𝐵𝐶𝑅𝐵))
96, 7, 83orbi123d 1437 . . . 4 (𝑦 = 𝐶 → ((𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵) ↔ (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
109imbi2d 340 . . 3 (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))))
11 df-so 5528 . . . . 5 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
12 breq1 5096 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
13 equequ1 2026 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
14 breq2 5097 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
1512, 13, 143orbi123d 1437 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑧𝑅𝑦𝑧 = 𝑦𝑦𝑅𝑧)))
1615ralbidv 3156 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑧𝑅𝑦𝑧 = 𝑦𝑦𝑅𝑧)))
1716rspw 3210 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝐴 → ∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
18 breq2 5097 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥𝑅𝑦𝑥𝑅𝑧))
19 equequ2 2027 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
20 breq1 5096 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
2118, 19, 203orbi123d 1437 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
2221rspw 3210 . . . . . . 7 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑦𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2317, 22syl6 35 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝐴 → (𝑦𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
2423impd 410 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2511, 24simplbiim 504 . . . 4 (𝑅 Or 𝐴 → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2625com12 32 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
275, 10, 26vtocl2ga 3530 . 2 ((𝐵𝐴𝐶𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
2827impcom 407 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5093   Po wpo 5525   Or wor 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-so 5528
This theorem is referenced by:  sotric  5557  sotrieq  5558  somo  5566  wecmpep  5611  sorpssi  7668  soxp  8065  infsupprpr  9397  wemaplem2  9440  fpwwe2lem11  10539  fpwwe2lem12  10540  lttri4  11204  xmullem  13165  xmulasslem  13186  orngsqr  20783  noresle  27637  nosupbnd1lem6  27653  noinfbnd1lem6  27668  sltlin  27689  weiunso  36531  fin2so  37667  fnwe2lem3  43169  prproropf1olem4  47630
  Copyright terms: Public domain W3C validator