![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > solin | Structured version Visualization version GIF version |
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.) |
Ref | Expression |
---|---|
solin | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4846 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝐵𝑅𝑦)) | |
2 | eqeq1 2803 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 = 𝑦 ↔ 𝐵 = 𝑦)) | |
3 | breq2 4847 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐵)) | |
4 | 1, 2, 3 | 3orbi123d 1560 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝐵𝑅𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦𝑅𝐵))) |
5 | 4 | imbi2d 332 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦𝑅𝐵)))) |
6 | breq2 4847 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐵𝑅𝑦 ↔ 𝐵𝑅𝐶)) | |
7 | eqeq2 2810 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐶)) | |
8 | breq1 4846 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑦𝑅𝐵 ↔ 𝐶𝑅𝐵)) | |
9 | 6, 7, 8 | 3orbi123d 1560 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
10 | 9 | imbi2d 332 | . . 3 ⊢ (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦𝑅𝐵)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)))) |
11 | df-so 5234 | . . . . 5 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
12 | rsp2 3117 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
13 | 11, 12 | simplbiim 500 | . . . 4 ⊢ (𝑅 Or 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
14 | 13 | com12 32 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
15 | 5, 10, 14 | vtocl2ga 3462 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
16 | 15 | impcom 397 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∨ w3o 1107 = wceq 1653 ∈ wcel 2157 ∀wral 3089 class class class wbr 4843 Po wpo 5231 Or wor 5232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-so 5234 |
This theorem is referenced by: sotric 5259 sotrieq 5260 somo 5267 wecmpep 5304 sorpssi 7177 soxp 7527 wfrlem10 7663 wemaplem2 8694 fpwwe2lem12 9751 fpwwe2lem13 9752 lttri4 10412 xmullem 12343 xmulasslem 12364 orngsqr 30320 noresle 32359 nosupbnd1lem6 32372 sltlin 32387 fin2so 33885 fnwe2lem3 38407 |
Copyright terms: Public domain | W3C validator |