MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  solin Structured version   Visualization version   GIF version

Theorem solin 5619
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
solin ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))

Proof of Theorem solin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5146 . . . . 5 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
2 eqeq1 2741 . . . . 5 (𝑥 = 𝐵 → (𝑥 = 𝑦𝐵 = 𝑦))
3 breq2 5147 . . . . 5 (𝑥 = 𝐵 → (𝑦𝑅𝑥𝑦𝑅𝐵))
41, 2, 33orbi123d 1437 . . . 4 (𝑥 = 𝐵 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)))
54imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵))))
6 breq2 5147 . . . . 5 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
7 eqeq2 2749 . . . . 5 (𝑦 = 𝐶 → (𝐵 = 𝑦𝐵 = 𝐶))
8 breq1 5146 . . . . 5 (𝑦 = 𝐶 → (𝑦𝑅𝐵𝐶𝑅𝐵))
96, 7, 83orbi123d 1437 . . . 4 (𝑦 = 𝐶 → ((𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵) ↔ (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
109imbi2d 340 . . 3 (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))))
11 df-so 5593 . . . . 5 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
12 breq1 5146 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
13 equequ1 2024 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
14 breq2 5147 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
1512, 13, 143orbi123d 1437 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑧𝑅𝑦𝑧 = 𝑦𝑦𝑅𝑧)))
1615ralbidv 3178 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑧𝑅𝑦𝑧 = 𝑦𝑦𝑅𝑧)))
1716rspw 3236 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝐴 → ∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
18 breq2 5147 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥𝑅𝑦𝑥𝑅𝑧))
19 equequ2 2025 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
20 breq1 5146 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
2118, 19, 203orbi123d 1437 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
2221rspw 3236 . . . . . . 7 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑦𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2317, 22syl6 35 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝐴 → (𝑦𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
2423impd 410 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2511, 24simplbiim 504 . . . 4 (𝑅 Or 𝐴 → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2625com12 32 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
275, 10, 26vtocl2ga 3578 . 2 ((𝐵𝐴𝐶𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
2827impcom 407 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143   Po wpo 5590   Or wor 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-so 5593
This theorem is referenced by:  sotric  5622  sotrieq  5623  somo  5631  wecmpep  5677  sorpssi  7749  soxp  8154  wfrlem10OLD  8358  infsupprpr  9544  wemaplem2  9587  fpwwe2lem11  10681  fpwwe2lem12  10682  lttri4  11345  xmullem  13306  xmulasslem  13327  noresle  27742  nosupbnd1lem6  27758  noinfbnd1lem6  27773  sltlin  27794  orngsqr  33334  weiunso  36467  fin2so  37614  fnwe2lem3  43064  prproropf1olem4  47493
  Copyright terms: Public domain W3C validator