MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  solin Structured version   Visualization version   GIF version

Theorem solin 5573
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
solin ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))

Proof of Theorem solin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5110 . . . . 5 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
2 eqeq1 2733 . . . . 5 (𝑥 = 𝐵 → (𝑥 = 𝑦𝐵 = 𝑦))
3 breq2 5111 . . . . 5 (𝑥 = 𝐵 → (𝑦𝑅𝑥𝑦𝑅𝐵))
41, 2, 33orbi123d 1437 . . . 4 (𝑥 = 𝐵 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)))
54imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵))))
6 breq2 5111 . . . . 5 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
7 eqeq2 2741 . . . . 5 (𝑦 = 𝐶 → (𝐵 = 𝑦𝐵 = 𝐶))
8 breq1 5110 . . . . 5 (𝑦 = 𝐶 → (𝑦𝑅𝐵𝐶𝑅𝐵))
96, 7, 83orbi123d 1437 . . . 4 (𝑦 = 𝐶 → ((𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵) ↔ (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
109imbi2d 340 . . 3 (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))))
11 df-so 5547 . . . . 5 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
12 breq1 5110 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
13 equequ1 2025 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
14 breq2 5111 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
1512, 13, 143orbi123d 1437 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑧𝑅𝑦𝑧 = 𝑦𝑦𝑅𝑧)))
1615ralbidv 3156 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑧𝑅𝑦𝑧 = 𝑦𝑦𝑅𝑧)))
1716rspw 3214 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝐴 → ∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
18 breq2 5111 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥𝑅𝑦𝑥𝑅𝑧))
19 equequ2 2026 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
20 breq1 5110 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
2118, 19, 203orbi123d 1437 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
2221rspw 3214 . . . . . . 7 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑦𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2317, 22syl6 35 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝐴 → (𝑦𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
2423impd 410 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2511, 24simplbiim 504 . . . 4 (𝑅 Or 𝐴 → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2625com12 32 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
275, 10, 26vtocl2ga 3544 . 2 ((𝐵𝐴𝐶𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
2827impcom 407 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107   Po wpo 5544   Or wor 5545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-so 5547
This theorem is referenced by:  sotric  5576  sotrieq  5577  somo  5585  wecmpep  5630  sorpssi  7705  soxp  8108  infsupprpr  9457  wemaplem2  9500  fpwwe2lem11  10594  fpwwe2lem12  10595  lttri4  11258  xmullem  13224  xmulasslem  13245  noresle  27609  nosupbnd1lem6  27625  noinfbnd1lem6  27640  sltlin  27661  orngsqr  33282  weiunso  36454  fin2so  37601  fnwe2lem3  43041  prproropf1olem4  47507
  Copyright terms: Public domain W3C validator