|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nelbOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nelb 3233 as of 3-Nov-2024. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nelbOLD | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne 2940 | . . . . 5 ⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴) | |
| 2 | 1 | ralbii 3092 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴) | 
| 3 | ralnex 3071 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | 
| 5 | risset 3232 | . . 3 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
| 6 | 4, 5 | xchbinxr 335 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵) | 
| 7 | 6 | bicomi 224 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |