MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelbOLD Structured version   Visualization version   GIF version

Theorem nelbOLD 3196
Description: Obsolete version of nelb 3195 as of 3-Nov-2024. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nelbOLD 𝐴𝐵 ↔ ∀𝑥𝐵 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nelbOLD
StepHypRef Expression
1 df-ne 2944 . . . . 5 (𝑥𝐴 ↔ ¬ 𝑥 = 𝐴)
21ralbii 3092 . . . 4 (∀𝑥𝐵 𝑥𝐴 ↔ ∀𝑥𝐵 ¬ 𝑥 = 𝐴)
3 ralnex 3167 . . . 4 (∀𝑥𝐵 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥𝐵 𝑥 = 𝐴)
42, 3bitri 274 . . 3 (∀𝑥𝐵 𝑥𝐴 ↔ ¬ ∃𝑥𝐵 𝑥 = 𝐴)
5 risset 3194 . . 3 (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
64, 5xchbinxr 335 . 2 (∀𝑥𝐵 𝑥𝐴 ↔ ¬ 𝐴𝐵)
76bicomi 223 1 𝐴𝐵 ↔ ∀𝑥𝐵 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator