MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb2ae Structured version   Visualization version   GIF version

Theorem sb2ae 2500
Description: In the case of two successive substitutions for two always equal variables, the second substitution has no effect. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by BJ and WL, 9-Aug-2023.) (New usage is discouraged.)
Assertion
Ref Expression
sb2ae (∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑))
Distinct variable group:   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem sb2ae
StepHypRef Expression
1 drsb1 2499 . 2 (∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑢 / 𝑦][𝑣 / 𝑦]𝜑))
2 nfs1v 2155 . . 3 𝑦[𝑣 / 𝑦]𝜑
32sbf 2266 . 2 ([𝑢 / 𝑦][𝑣 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑)
41, 3bitrdi 286 1 (∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator