Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4OLD Structured version   Visualization version   GIF version

Theorem sb4OLD 2498
 Description: Obsolete as of 30-Jul-2023. Use sb4b 2491 instead. One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 14-May-1993.) Revise df-sb 2070. (Revised by Wolf Lammen, 25-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb4OLD (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem sb4OLD
StepHypRef Expression
1 sb4b 2491 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
21biimpd 232 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1536  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2143  ax-12 2176  ax-13 2382 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  sbi1OLD  2522
 Copyright terms: Public domain W3C validator