Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of sb1 2479 as of 21-Feb-2024. (Contributed by NM, 13-May-1993.) Revise df-sb 2069. (Revised by Wolf Lammen, 29-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb1OLD | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ2 2244 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
2 | 19.8a 2176 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
4 | 1, 3 | syld 47 | . . 3 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
5 | 4 | sps 2180 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
6 | sb4b 2475 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
7 | equs4 2416 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
8 | 6, 7 | syl6bi 252 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
9 | 5, 8 | pm2.61i 182 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |