MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4b Structured version   Visualization version   GIF version

Theorem sb4b 2474
Description: Simplified definition of substitution when variables are distinct. Version of sb6 2091 with a distinctor. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 27-May-1997.) Revise df-sb 2071. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.)
Assertion
Ref Expression
sb4b (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))

Proof of Theorem sb4b
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfna1 2153 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑡
2 nfeqf2 2376 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑡 → Ⅎ𝑥 𝑦 = 𝑡)
31, 2nfan1 2198 . . . . 5 𝑥(¬ ∀𝑥 𝑥 = 𝑡𝑦 = 𝑡)
4 equequ2 2034 . . . . . . 7 (𝑦 = 𝑡 → (𝑥 = 𝑦𝑥 = 𝑡))
54imbi1d 345 . . . . . 6 (𝑦 = 𝑡 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑡𝜑)))
65adantl 485 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑡𝑦 = 𝑡) → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑡𝜑)))
73, 6albid 2220 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑡𝑦 = 𝑡) → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
87pm5.74da 804 . . 3 (¬ ∀𝑥 𝑥 = 𝑡 → ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑))))
98albidv 1928 . 2 (¬ ∀𝑥 𝑥 = 𝑡 → (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑))))
10 df-sb 2071 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
11 ax6ev 1978 . . . 4 𝑦 𝑦 = 𝑡
1211a1bi 366 . . 3 (∀𝑥(𝑥 = 𝑡𝜑) ↔ (∃𝑦 𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)))
13 19.23v 1950 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ (∃𝑦 𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)))
1412, 13bitr4i 281 . 2 (∀𝑥(𝑥 = 𝑡𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)))
159, 10, 143bitr4g 317 1 (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541  wex 1787  [wsb 2070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2141  ax-12 2175  ax-13 2371
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792  df-sb 2071
This theorem is referenced by:  sb3b  2476  sb2  2479  sb1OLD  2481  sb4a  2483  hbsb2  2485  dfsb2  2496  sbcom3  2509  sbal1  2532  sbal2  2533  wl-2sb6d  35450  wl-sbalnae  35454
  Copyright terms: Public domain W3C validator