![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb4b | Structured version Visualization version GIF version |
Description: Simplified definition of substitution when variables are distinct. Version of sb6 2081 with a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2366. (Contributed by NM, 27-May-1997.) Revise df-sb 2061. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb4b | ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 2142 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑡 | |
2 | nfeqf2 2371 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → Ⅎ𝑥 𝑦 = 𝑡) | |
3 | 1, 2 | nfan1 2186 | . . . . 5 ⊢ Ⅎ𝑥(¬ ∀𝑥 𝑥 = 𝑡 ∧ 𝑦 = 𝑡) |
4 | equequ2 2022 | . . . . . . 7 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
5 | 4 | imbi1d 341 | . . . . . 6 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((¬ ∀𝑥 𝑥 = 𝑡 ∧ 𝑦 = 𝑡) → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
7 | 3, 6 | albid 2208 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑡 ∧ 𝑦 = 𝑡) → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
8 | 7 | pm5.74da 803 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
9 | 8 | albidv 1916 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
10 | df-sb 2061 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
11 | ax6ev 1966 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑡 | |
12 | 11 | a1bi 362 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ (∃𝑦 𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
13 | 19.23v 1938 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) ↔ (∃𝑦 𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) | |
14 | 12, 13 | bitr4i 278 | . 2 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
15 | 9, 10, 14 | 3bitr4g 314 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∃wex 1774 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-12 2164 ax-13 2366 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 df-sb 2061 |
This theorem is referenced by: sb3b 2470 sb2 2473 sb4a 2474 hbsb2 2476 dfsb2 2487 sbcom3 2500 sbal1 2522 sbal2 2523 wl-2sb6d 36960 wl-sbalnae 36964 |
Copyright terms: Public domain | W3C validator |