MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb6rfv Structured version   Visualization version   GIF version

Theorem sb6rfv 2355
Description: Reversed substitution. Version of sb6rf 2468 requiring disjoint variables, but fewer axioms. (Contributed by NM, 1-Aug-1993.) (Revised by Wolf Lammen, 7-Feb-2023.)
Hypothesis
Ref Expression
sb6rfv.nf 𝑦𝜑
Assertion
Ref Expression
sb6rfv (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb6rfv
StepHypRef Expression
1 sb6rfv.nf . . 3 𝑦𝜑
2 sbequ12r 2248 . . 3 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2equsalv 2262 . 2 (∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑) ↔ 𝜑)
43bicomi 223 1 (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  eu1  2612
  Copyright terms: Public domain W3C validator