|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eu1 | Structured version Visualization version GIF version | ||
| Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 29-Oct-2018.) Avoid ax-13 2377. (Revised by Wolf Lammen, 7-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| eu1.nf | ⊢ Ⅎ𝑦𝜑 | 
| Ref | Expression | 
|---|---|
| eu1 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfs1v 2156 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 2 | 1 | euf 2576 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑥∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑥)) | 
| 3 | eu1.nf | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | sb8euv 2599 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) | 
| 5 | 3 | sb6rfv 2360 | . . . . 5 ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) | 
| 6 | equcom 2017 | . . . . . . 7 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 7 | 6 | imbi2i 336 | . . . . . 6 ⊢ (([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑥)) | 
| 8 | 7 | albii 1819 | . . . . 5 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑥)) | 
| 9 | 5, 8 | anbi12ci 629 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ (∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑥) ∧ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))) | 
| 10 | albiim 1889 | . . . 4 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑥) ↔ (∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑥) ∧ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))) | |
| 11 | 9, 10 | bitr4i 278 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑥)) | 
| 12 | 11 | exbii 1848 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ ∃𝑥∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑥)) | 
| 13 | 2, 4, 12 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 [wsb 2064 ∃!weu 2568 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 | 
| This theorem is referenced by: kmlem15 10205 | 
| Copyright terms: Public domain | W3C validator |