![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbalv | Structured version Visualization version GIF version |
Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sbalv.1 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbalv | ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbal 2170 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧[𝑦 / 𝑥]𝜑) | |
2 | sbalv.1 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
3 | 2 | albii 1817 | . 2 ⊢ (∀𝑧[𝑦 / 𝑥]𝜑 ↔ ∀𝑧𝜓) |
4 | 1, 3 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-sb 2065 |
This theorem is referenced by: sbex 2285 sbmo 2617 sbabel 2944 sbabelOLD 2945 mo5f 32517 |
Copyright terms: Public domain | W3C validator |