| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbalv | Structured version Visualization version GIF version | ||
| Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbalv.1 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbalv | ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbal 2169 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧[𝑦 / 𝑥]𝜑) | |
| 2 | sbalv.1 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑧[𝑦 / 𝑥]𝜑 ↔ ∀𝑧𝜓) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2157 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-sb 2065 |
| This theorem is referenced by: sbex 2281 sbmo 2613 sbabel 2931 mo5f 32470 |
| Copyright terms: Public domain | W3C validator |