Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mo5f Structured version   Visualization version   GIF version

Theorem mo5f 30359
 Description: Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017.)
Hypotheses
Ref Expression
mo5f.1 𝑖𝜑
mo5f.2 𝑗𝜑
Assertion
Ref Expression
mo5f (∃*𝑥𝜑 ↔ ∀𝑖𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
Distinct variable group:   𝑖,𝑗,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑖,𝑗)

Proof of Theorem mo5f
StepHypRef Expression
1 mo5f.2 . . 3 𝑗𝜑
21mo3 2582 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗))
3 mo5f.1 . . . . . 6 𝑖𝜑
43nfsbv 2338 . . . . . 6 𝑖[𝑗 / 𝑥]𝜑
53, 4nfan 1900 . . . . 5 𝑖(𝜑 ∧ [𝑗 / 𝑥]𝜑)
6 nfv 1915 . . . . 5 𝑖 𝑥 = 𝑗
75, 6nfim 1897 . . . 4 𝑖((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗)
87nfal 2331 . . 3 𝑖𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗)
98sb8v 2362 . 2 (∀𝑥𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑖[𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗))
10 sbim 2307 . . . . 5 ([𝑖 / 𝑥]((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) → [𝑖 / 𝑥]𝑥 = 𝑗))
11 sban 2085 . . . . . . 7 ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑))
12 nfs1v 2157 . . . . . . . . . 10 𝑥[𝑗 / 𝑥]𝜑
1312sbf 2268 . . . . . . . . 9 ([𝑖 / 𝑥][𝑗 / 𝑥]𝜑 ↔ [𝑗 / 𝑥]𝜑)
1413bicomi 227 . . . . . . . 8 ([𝑗 / 𝑥]𝜑 ↔ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑)
1514anbi2i 625 . . . . . . 7 (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑))
1611, 15bitr4i 281 . . . . . 6 ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑))
17 equsb3 2106 . . . . . 6 ([𝑖 / 𝑥]𝑥 = 𝑗𝑖 = 𝑗)
1816, 17imbi12i 354 . . . . 5 (([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) → [𝑖 / 𝑥]𝑥 = 𝑗) ↔ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
1910, 18bitri 278 . . . 4 ([𝑖 / 𝑥]((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
2019sbalv 2164 . . 3 ([𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
2120albii 1821 . 2 (∀𝑖[𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑖𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
222, 9, 213bitri 300 1 (∃*𝑥𝜑 ↔ ∀𝑖𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  Ⅎwnf 1785  [wsb 2069  ∃*wmo 2555 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-11 2158  ax-12 2175 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator