Proof of Theorem mo5f
| Step | Hyp | Ref
| Expression |
| 1 | | mo5f.2 |
. . 3
⊢
Ⅎ𝑗𝜑 |
| 2 | 1 | mo3 2564 |
. 2
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗)) |
| 3 | | mo5f.1 |
. . . . . 6
⊢
Ⅎ𝑖𝜑 |
| 4 | 3 | nfsbv 2331 |
. . . . . 6
⊢
Ⅎ𝑖[𝑗 / 𝑥]𝜑 |
| 5 | 3, 4 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑖(𝜑 ∧ [𝑗 / 𝑥]𝜑) |
| 6 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑖 𝑥 = 𝑗 |
| 7 | 5, 6 | nfim 1896 |
. . . 4
⊢
Ⅎ𝑖((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) |
| 8 | 7 | nfal 2324 |
. . 3
⊢
Ⅎ𝑖∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) |
| 9 | 8 | sb8f 2356 |
. 2
⊢
(∀𝑥∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑖[𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗)) |
| 10 | | sbim 2304 |
. . . . 5
⊢ ([𝑖 / 𝑥]((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) → [𝑖 / 𝑥]𝑥 = 𝑗)) |
| 11 | | sban 2081 |
. . . . . . 7
⊢ ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑)) |
| 12 | | nfs1v 2157 |
. . . . . . . . . 10
⊢
Ⅎ𝑥[𝑗 / 𝑥]𝜑 |
| 13 | 12 | sbf 2272 |
. . . . . . . . 9
⊢ ([𝑖 / 𝑥][𝑗 / 𝑥]𝜑 ↔ [𝑗 / 𝑥]𝜑) |
| 14 | 13 | bicomi 224 |
. . . . . . . 8
⊢ ([𝑗 / 𝑥]𝜑 ↔ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑) |
| 15 | 14 | anbi2i 623 |
. . . . . . 7
⊢ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑)) |
| 16 | 11, 15 | bitr4i 278 |
. . . . . 6
⊢ ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑)) |
| 17 | | equsb3 2104 |
. . . . . 6
⊢ ([𝑖 / 𝑥]𝑥 = 𝑗 ↔ 𝑖 = 𝑗) |
| 18 | 16, 17 | imbi12i 350 |
. . . . 5
⊢ (([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) → [𝑖 / 𝑥]𝑥 = 𝑗) ↔ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |
| 19 | 10, 18 | bitri 275 |
. . . 4
⊢ ([𝑖 / 𝑥]((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |
| 20 | 19 | sbalv 2171 |
. . 3
⊢ ([𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |
| 21 | 20 | albii 1819 |
. 2
⊢
(∀𝑖[𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑖∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |
| 22 | 2, 9, 21 | 3bitri 297 |
1
⊢
(∃*𝑥𝜑 ↔ ∀𝑖∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |