Proof of Theorem mo5f
Step | Hyp | Ref
| Expression |
1 | | mo5f.2 |
. . 3
⊢
Ⅎ𝑗𝜑 |
2 | 1 | mo3 2564 |
. 2
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗)) |
3 | | mo5f.1 |
. . . . . 6
⊢
Ⅎ𝑖𝜑 |
4 | 3 | nfsbv 2328 |
. . . . . 6
⊢
Ⅎ𝑖[𝑗 / 𝑥]𝜑 |
5 | 3, 4 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑖(𝜑 ∧ [𝑗 / 𝑥]𝜑) |
6 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑖 𝑥 = 𝑗 |
7 | 5, 6 | nfim 1900 |
. . . 4
⊢
Ⅎ𝑖((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) |
8 | 7 | nfal 2321 |
. . 3
⊢
Ⅎ𝑖∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) |
9 | 8 | sb8v 2352 |
. 2
⊢
(∀𝑥∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑖[𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗)) |
10 | | sbim 2303 |
. . . . 5
⊢ ([𝑖 / 𝑥]((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) → [𝑖 / 𝑥]𝑥 = 𝑗)) |
11 | | sban 2084 |
. . . . . . 7
⊢ ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑)) |
12 | | nfs1v 2155 |
. . . . . . . . . 10
⊢
Ⅎ𝑥[𝑗 / 𝑥]𝜑 |
13 | 12 | sbf 2266 |
. . . . . . . . 9
⊢ ([𝑖 / 𝑥][𝑗 / 𝑥]𝜑 ↔ [𝑗 / 𝑥]𝜑) |
14 | 13 | bicomi 223 |
. . . . . . . 8
⊢ ([𝑗 / 𝑥]𝜑 ↔ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑) |
15 | 14 | anbi2i 622 |
. . . . . . 7
⊢ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥][𝑗 / 𝑥]𝜑)) |
16 | 11, 15 | bitr4i 277 |
. . . . . 6
⊢ ([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑)) |
17 | | equsb3 2103 |
. . . . . 6
⊢ ([𝑖 / 𝑥]𝑥 = 𝑗 ↔ 𝑖 = 𝑗) |
18 | 16, 17 | imbi12i 350 |
. . . . 5
⊢ (([𝑖 / 𝑥](𝜑 ∧ [𝑗 / 𝑥]𝜑) → [𝑖 / 𝑥]𝑥 = 𝑗) ↔ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |
19 | 10, 18 | bitri 274 |
. . . 4
⊢ ([𝑖 / 𝑥]((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ (([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |
20 | 19 | sbalv 2162 |
. . 3
⊢ ([𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |
21 | 20 | albii 1823 |
. 2
⊢
(∀𝑖[𝑖 / 𝑥]∀𝑗((𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑥 = 𝑗) ↔ ∀𝑖∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |
22 | 2, 9, 21 | 3bitri 296 |
1
⊢
(∃*𝑥𝜑 ↔ ∀𝑖∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) |