Step | Hyp | Ref
| Expression |
1 | | 2sb6 2253 |
. . . . . . . . 9
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ ∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑)) |
2 | | alcom 2152 |
. . . . . . . . 9
⊢
(∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ∀𝑥∀𝑧((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑)) |
3 | | ancomst 458 |
. . . . . . . . . 10
⊢ (((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
4 | 3 | 2albii 1864 |
. . . . . . . . 9
⊢
(∀𝑥∀𝑧((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
5 | 1, 2, 4 | 3bitri 289 |
. . . . . . . 8
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
6 | | 2sb6 2253 |
. . . . . . . 8
⊢ ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
7 | 5, 6 | bitr4i 270 |
. . . . . . 7
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ [𝑢 / 𝑥][𝑣 / 𝑧]𝜑) |
8 | | nfv 1957 |
. . . . . . . 8
⊢
Ⅎ𝑧 𝑢 = 𝑦 |
9 | | sbequ 2452 |
. . . . . . . 8
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
10 | 8, 9 | sbbid 2227 |
. . . . . . 7
⊢ (𝑢 = 𝑦 → ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑦 / 𝑥]𝜑)) |
11 | 7, 10 | syl5bbr 277 |
. . . . . 6
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑣 / 𝑧][𝑦 / 𝑥]𝜑)) |
12 | | sbequ 2452 |
. . . . . 6
⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)) |
13 | 11, 12 | sylan9bb 505 |
. . . . 5
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)) |
14 | | nfv 1957 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑣 = 𝑤 |
15 | | sbequ 2452 |
. . . . . . 7
⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)) |
16 | 14, 15 | sbbid 2227 |
. . . . . 6
⊢ (𝑣 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑)) |
17 | | sbequ 2452 |
. . . . . 6
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
18 | 16, 17 | sylan9bbr 506 |
. . . . 5
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
19 | 13, 18 | bitr3d 273 |
. . . 4
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
20 | 19 | ex 403 |
. . 3
⊢ (𝑢 = 𝑦 → (𝑣 = 𝑤 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
21 | | ax6ev 2023 |
. . 3
⊢
∃𝑢 𝑢 = 𝑦 |
22 | 20, 21 | exlimiiv 1974 |
. 2
⊢ (𝑣 = 𝑤 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
23 | | ax6ev 2023 |
. 2
⊢
∃𝑣 𝑣 = 𝑤 |
24 | 22, 23 | exlimiiv 1974 |
1
⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |