| Step | Hyp | Ref
| Expression |
| 1 | | 2sb6 2086 |
. . . . . . . . 9
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ ∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑)) |
| 2 | | alcom 2159 |
. . . . . . . . 9
⊢
(∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ∀𝑥∀𝑧((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑)) |
| 3 | | ancomst 464 |
. . . . . . . . . 10
⊢ (((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
| 4 | 3 | 2albii 1820 |
. . . . . . . . 9
⊢
(∀𝑥∀𝑧((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
| 5 | 1, 2, 4 | 3bitri 297 |
. . . . . . . 8
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
| 6 | | 2sb6 2086 |
. . . . . . . 8
⊢ ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
| 7 | 5, 6 | bitr4i 278 |
. . . . . . 7
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ [𝑢 / 𝑥][𝑣 / 𝑧]𝜑) |
| 8 | | sbequ 2083 |
. . . . . . . 8
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 9 | 8 | sbbidv 2079 |
. . . . . . 7
⊢ (𝑢 = 𝑦 → ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑦 / 𝑥]𝜑)) |
| 10 | 7, 9 | bitr3id 285 |
. . . . . 6
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑣 / 𝑧][𝑦 / 𝑥]𝜑)) |
| 11 | | sbequ 2083 |
. . . . . 6
⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)) |
| 12 | 10, 11 | sylan9bb 509 |
. . . . 5
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)) |
| 13 | | sbequ 2083 |
. . . . . . 7
⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)) |
| 14 | 13 | sbbidv 2079 |
. . . . . 6
⊢ (𝑣 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑)) |
| 15 | | sbequ 2083 |
. . . . . 6
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
| 16 | 14, 15 | sylan9bbr 510 |
. . . . 5
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
| 17 | 12, 16 | bitr3d 281 |
. . . 4
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
| 18 | 17 | ex 412 |
. . 3
⊢ (𝑢 = 𝑦 → (𝑣 = 𝑤 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
| 19 | | ax6ev 1969 |
. . 3
⊢
∃𝑢 𝑢 = 𝑦 |
| 20 | 18, 19 | exlimiiv 1931 |
. 2
⊢ (𝑣 = 𝑤 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
| 21 | | ax6ev 1969 |
. 2
⊢
∃𝑣 𝑣 = 𝑤 |
| 22 | 20, 21 | exlimiiv 1931 |
1
⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |