MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbmo Structured version   Visualization version   GIF version

Theorem sbmo 2616
Description: Substitution into an at-most-one quantifier. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
sbmo ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbex 2281 . . 3 ([𝑦 / 𝑥]∃𝑤𝑧(𝜑𝑧 = 𝑤) ↔ ∃𝑤[𝑦 / 𝑥]∀𝑧(𝜑𝑧 = 𝑤))
2 nfv 1918 . . . . . 6 𝑥 𝑧 = 𝑤
32sblim 2306 . . . . 5 ([𝑦 / 𝑥](𝜑𝑧 = 𝑤) ↔ ([𝑦 / 𝑥]𝜑𝑧 = 𝑤))
43sbalv 2162 . . . 4 ([𝑦 / 𝑥]∀𝑧(𝜑𝑧 = 𝑤) ↔ ∀𝑧([𝑦 / 𝑥]𝜑𝑧 = 𝑤))
54exbii 1851 . . 3 (∃𝑤[𝑦 / 𝑥]∀𝑧(𝜑𝑧 = 𝑤) ↔ ∃𝑤𝑧([𝑦 / 𝑥]𝜑𝑧 = 𝑤))
61, 5bitri 274 . 2 ([𝑦 / 𝑥]∃𝑤𝑧(𝜑𝑧 = 𝑤) ↔ ∃𝑤𝑧([𝑦 / 𝑥]𝜑𝑧 = 𝑤))
7 df-mo 2540 . . 3 (∃*𝑧𝜑 ↔ ∃𝑤𝑧(𝜑𝑧 = 𝑤))
87sbbii 2080 . 2 ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ [𝑦 / 𝑥]∃𝑤𝑧(𝜑𝑧 = 𝑤))
9 df-mo 2540 . 2 (∃*𝑧[𝑦 / 𝑥]𝜑 ↔ ∃𝑤𝑧([𝑦 / 𝑥]𝜑𝑧 = 𝑤))
106, 8, 93bitr4i 302 1 ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783  [wsb 2068  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator