| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbmo | Structured version Visualization version GIF version | ||
| Description: Substitution into an at-most-one quantifier. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| sbmo | ⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbex 2283 | . . 3 ⊢ ([𝑦 / 𝑥]∃𝑤∀𝑧(𝜑 → 𝑧 = 𝑤) ↔ ∃𝑤[𝑦 / 𝑥]∀𝑧(𝜑 → 𝑧 = 𝑤)) | |
| 2 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 = 𝑤 | |
| 3 | 2 | sblim 2307 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 → 𝑧 = 𝑤) ↔ ([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) |
| 4 | 3 | sbalv 2173 | . . . 4 ⊢ ([𝑦 / 𝑥]∀𝑧(𝜑 → 𝑧 = 𝑤) ↔ ∀𝑧([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) |
| 5 | 4 | exbii 1849 | . . 3 ⊢ (∃𝑤[𝑦 / 𝑥]∀𝑧(𝜑 → 𝑧 = 𝑤) ↔ ∃𝑤∀𝑧([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) |
| 6 | 1, 5 | bitri 275 | . 2 ⊢ ([𝑦 / 𝑥]∃𝑤∀𝑧(𝜑 → 𝑧 = 𝑤) ↔ ∃𝑤∀𝑧([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) |
| 7 | df-mo 2535 | . . 3 ⊢ (∃*𝑧𝜑 ↔ ∃𝑤∀𝑧(𝜑 → 𝑧 = 𝑤)) | |
| 8 | 7 | sbbii 2079 | . 2 ⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ [𝑦 / 𝑥]∃𝑤∀𝑧(𝜑 → 𝑧 = 𝑤)) |
| 9 | df-mo 2535 | . 2 ⊢ (∃*𝑧[𝑦 / 𝑥]𝜑 ↔ ∃𝑤∀𝑧([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) | |
| 10 | 6, 8, 9 | 3bitr4i 303 | 1 ⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 [wsb 2067 ∃*wmo 2533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |