Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbmo | Structured version Visualization version GIF version |
Description: Substitution into an at-most-one quantifier. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
sbmo | ⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbex 2286 | . . 3 ⊢ ([𝑦 / 𝑥]∃𝑤∀𝑧(𝜑 → 𝑧 = 𝑤) ↔ ∃𝑤[𝑦 / 𝑥]∀𝑧(𝜑 → 𝑧 = 𝑤)) | |
2 | nfv 1921 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 = 𝑤 | |
3 | 2 | sblim 2311 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 → 𝑧 = 𝑤) ↔ ([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) |
4 | 3 | sbalv 2168 | . . . 4 ⊢ ([𝑦 / 𝑥]∀𝑧(𝜑 → 𝑧 = 𝑤) ↔ ∀𝑧([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) |
5 | 4 | exbii 1854 | . . 3 ⊢ (∃𝑤[𝑦 / 𝑥]∀𝑧(𝜑 → 𝑧 = 𝑤) ↔ ∃𝑤∀𝑧([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) |
6 | 1, 5 | bitri 278 | . 2 ⊢ ([𝑦 / 𝑥]∃𝑤∀𝑧(𝜑 → 𝑧 = 𝑤) ↔ ∃𝑤∀𝑧([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) |
7 | df-mo 2541 | . . 3 ⊢ (∃*𝑧𝜑 ↔ ∃𝑤∀𝑧(𝜑 → 𝑧 = 𝑤)) | |
8 | 7 | sbbii 2086 | . 2 ⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ [𝑦 / 𝑥]∃𝑤∀𝑧(𝜑 → 𝑧 = 𝑤)) |
9 | df-mo 2541 | . 2 ⊢ (∃*𝑧[𝑦 / 𝑥]𝜑 ↔ ∃𝑤∀𝑧([𝑦 / 𝑥]𝜑 → 𝑧 = 𝑤)) | |
10 | 6, 8, 9 | 3bitr4i 306 | 1 ⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1540 ∃wex 1786 [wsb 2074 ∃*wmo 2539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-10 2145 ax-11 2162 ax-12 2179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |