MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbex Structured version   Visualization version   GIF version

Theorem sbex 2278
Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.)
Assertion
Ref Expression
sbex ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbex
StepHypRef Expression
1 sbn 2277 . . 3 ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]∀𝑥 ¬ 𝜑)
2 sbn 2277 . . . 4 ([𝑧 / 𝑦] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]𝜑)
32sbalv 2160 . . 3 ([𝑧 / 𝑦]∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑)
41, 3xchbinx 334 . 2 ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑)
5 df-ex 1783 . . 3 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
65sbbii 2079 . 2 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑)
7 df-ex 1783 . 2 (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑)
84, 6, 73bitr4i 303 1 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537  wex 1782  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  sbmo  2616  sbabel  2941  sbabelOLD  2942  sbcex2  3781
  Copyright terms: Public domain W3C validator