| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbex | Structured version Visualization version GIF version | ||
| Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbex | ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn 2280 | . . 3 ⊢ ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]∀𝑥 ¬ 𝜑) | |
| 2 | sbn 2280 | . . . 4 ⊢ ([𝑧 / 𝑦] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]𝜑) | |
| 3 | 2 | sbalv 2170 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) |
| 4 | 1, 3 | xchbinx 334 | . 2 ⊢ ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) |
| 5 | df-ex 1780 | . . 3 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 6 | 5 | sbbii 2076 | . 2 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑) |
| 7 | df-ex 1780 | . 2 ⊢ (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbnf 2312 sbmo 2614 sbabel 2938 sbabelOLD 2939 sbcex2 3850 |
| Copyright terms: Public domain | W3C validator |