Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbex | Structured version Visualization version GIF version |
Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
Ref | Expression |
---|---|
sbex | ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 2280 | . . 3 ⊢ ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]∀𝑥 ¬ 𝜑) | |
2 | sbn 2280 | . . . 4 ⊢ ([𝑧 / 𝑦] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑦]𝜑) | |
3 | 2 | sbalv 2163 | . . 3 ⊢ ([𝑧 / 𝑦]∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) |
4 | 1, 3 | xchbinx 333 | . 2 ⊢ ([𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) |
5 | df-ex 1786 | . . 3 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | 5 | sbbii 2082 | . 2 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑦] ¬ ∀𝑥 ¬ 𝜑) |
7 | df-ex 1786 | . 2 ⊢ (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ¬ ∀𝑥 ¬ [𝑧 / 𝑦]𝜑) | |
8 | 4, 6, 7 | 3bitr4i 302 | 1 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1539 ∃wex 1785 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-11 2157 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 |
This theorem is referenced by: sbmo 2617 sbabel 2942 sbabelOLD 2943 sbcex2 3785 |
Copyright terms: Public domain | W3C validator |