MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbabel Structured version   Visualization version   GIF version

Theorem sbabel 2932
Description: Theorem to move a substitution in and out of a class abstraction. (Contributed by NM, 27-Sep-2003.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 28-Oct-2024.)
Hypothesis
Ref Expression
sbabel.1 𝑥𝐴
Assertion
Ref Expression
sbabel ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem sbabel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 clabel 2882 . . . 4 ({𝑧𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
21sbbii 2077 . . 3 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ [𝑦 / 𝑥]∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
3 sbex 2282 . . 3 ([𝑦 / 𝑥]∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ∃𝑣[𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
4 sban 2081 . . . . 5 ([𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ([𝑦 / 𝑥]𝑣𝐴 ∧ [𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑)))
5 sbabel.1 . . . . . . . 8 𝑥𝐴
65nfcri 2891 . . . . . . 7 𝑥 𝑣𝐴
76sbf 2272 . . . . . 6 ([𝑦 / 𝑥]𝑣𝐴𝑣𝐴)
8 sbv 2089 . . . . . . . 8 ([𝑦 / 𝑥]𝑧𝑣𝑧𝑣)
98sbrbis 2311 . . . . . . 7 ([𝑦 / 𝑥](𝑧𝑣𝜑) ↔ (𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
109sbalv 2171 . . . . . 6 ([𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑) ↔ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
117, 10anbi12i 628 . . . . 5 (([𝑦 / 𝑥]𝑣𝐴 ∧ [𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑)) ↔ (𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
124, 11bitri 275 . . . 4 ([𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ (𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
1312exbii 1848 . . 3 (∃𝑣[𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
142, 3, 133bitri 297 . 2 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
15 clabel 2882 . 2 ({𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
1614, 15bitr4i 278 1 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538  wex 1779  [wsb 2065  wcel 2109  {cab 2714  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator