MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbabel Structured version   Visualization version   GIF version

Theorem sbabel 2939
Description: Theorem to move a substitution in and out of a class abstraction. (Contributed by NM, 27-Sep-2003.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 28-Oct-2024.)
Hypothesis
Ref Expression
sbabel.1 𝑥𝐴
Assertion
Ref Expression
sbabel ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem sbabel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 clabel 2883 . . . 4 ({𝑧𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
21sbbii 2083 . . 3 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ [𝑦 / 𝑥]∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
3 sbex 2283 . . 3 ([𝑦 / 𝑥]∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ∃𝑣[𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
4 sban 2087 . . . . 5 ([𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ([𝑦 / 𝑥]𝑣𝐴 ∧ [𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑)))
5 sbabel.1 . . . . . . . 8 𝑥𝐴
65nfcri 2892 . . . . . . 7 𝑥 𝑣𝐴
76sbf 2268 . . . . . 6 ([𝑦 / 𝑥]𝑣𝐴𝑣𝐴)
8 sbv 2095 . . . . . . . 8 ([𝑦 / 𝑥]𝑧𝑣𝑧𝑣)
98sbrbis 2312 . . . . . . 7 ([𝑦 / 𝑥](𝑧𝑣𝜑) ↔ (𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
109sbalv 2165 . . . . . 6 ([𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑) ↔ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
117, 10anbi12i 630 . . . . 5 (([𝑦 / 𝑥]𝑣𝐴 ∧ [𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑)) ↔ (𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
124, 11bitri 278 . . . 4 ([𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ (𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
1312exbii 1855 . . 3 (∃𝑣[𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
142, 3, 133bitri 300 . 2 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
15 clabel 2883 . 2 ({𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
1614, 15bitr4i 281 1 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wal 1541  wex 1787  [wsb 2071  wcel 2111  {cab 2715  wnfc 2885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator