Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbbibvv | Structured version Visualization version GIF version |
Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023.) |
Ref | Expression |
---|---|
sbbibvv | ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | sbbib 2359 | 1 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |