MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbbibvv Structured version   Visualization version   GIF version

Theorem sbbibvv 2368
Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023.)
Assertion
Ref Expression
sbbibvv (∀𝑦([𝑦 / 𝑥]𝜑𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓))
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem sbbibvv
StepHypRef Expression
1 nfv 1913 . 2 𝑦𝜑
2 nfv 1913 . 2 𝑥𝜓
31, 2sbbib 2367 1 (∀𝑦([𝑦 / 𝑥]𝜑𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator