![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbbibvv | Structured version Visualization version GIF version |
Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023.) |
Ref | Expression |
---|---|
sbbibvv | ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | sbbib 2367 | 1 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |