Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbbib | Structured version Visualization version GIF version |
Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023.) (Proof shortened by Wolf Lammen, 4-Sep-2023.) |
Ref | Expression |
---|---|
sbbib.y | ⊢ Ⅎ𝑦𝜑 |
sbbib.x | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
sbbib | ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfs1v 2155 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
2 | sbbib.x | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | nfbi 1907 | . 2 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
4 | sbbib.y | . . 3 ⊢ Ⅎ𝑦𝜑 | |
5 | nfs1v 2155 | . . 3 ⊢ Ⅎ𝑦[𝑥 / 𝑦]𝜓 | |
6 | 4, 5 | nfbi 1907 | . 2 ⊢ Ⅎ𝑦(𝜑 ↔ [𝑥 / 𝑦]𝜓) |
7 | sbequ12r 2248 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
8 | sbequ12 2247 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ [𝑥 / 𝑦]𝜓)) | |
9 | 7, 8 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝑥 → (([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ (𝜑 ↔ [𝑥 / 𝑦]𝜓))) |
10 | 3, 6, 9 | cbvalv1 2340 | 1 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: sbbibvv 2360 dfich2 44798 |
Copyright terms: Public domain | W3C validator |