MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbbib Structured version   Visualization version   GIF version

Theorem sbbib 2359
Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023.) (Proof shortened by Wolf Lammen, 4-Sep-2023.)
Hypotheses
Ref Expression
sbbib.y 𝑦𝜑
sbbib.x 𝑥𝜓
Assertion
Ref Expression
sbbib (∀𝑦([𝑦 / 𝑥]𝜑𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbbib
StepHypRef Expression
1 nfs1v 2153 . . 3 𝑥[𝑦 / 𝑥]𝜑
2 sbbib.x . . 3 𝑥𝜓
31, 2nfbi 1906 . 2 𝑥([𝑦 / 𝑥]𝜑𝜓)
4 sbbib.y . . 3 𝑦𝜑
5 nfs1v 2153 . . 3 𝑦[𝑥 / 𝑦]𝜓
64, 5nfbi 1906 . 2 𝑦(𝜑 ↔ [𝑥 / 𝑦]𝜓)
7 sbequ12r 2245 . . 3 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
8 sbequ12 2244 . . 3 (𝑦 = 𝑥 → (𝜓 ↔ [𝑥 / 𝑦]𝜓))
97, 8bibi12d 346 . 2 (𝑦 = 𝑥 → (([𝑦 / 𝑥]𝜑𝜓) ↔ (𝜑 ↔ [𝑥 / 𝑦]𝜓)))
103, 6, 9cbvalv1 2338 1 (∀𝑦([𝑦 / 𝑥]𝜑𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  sbbibvv  2360  dfich2  44910
  Copyright terms: Public domain W3C validator