|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbbib | Structured version Visualization version GIF version | ||
| Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023.) (Proof shortened by Wolf Lammen, 4-Sep-2023.) | 
| Ref | Expression | 
|---|---|
| sbbib.y | ⊢ Ⅎ𝑦𝜑 | 
| sbbib.x | ⊢ Ⅎ𝑥𝜓 | 
| Ref | Expression | 
|---|---|
| sbbib | ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfs1v 2156 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 2 | sbbib.x | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | nfbi 1903 | . 2 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| 4 | sbbib.y | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 5 | nfs1v 2156 | . . 3 ⊢ Ⅎ𝑦[𝑥 / 𝑦]𝜓 | |
| 6 | 4, 5 | nfbi 1903 | . 2 ⊢ Ⅎ𝑦(𝜑 ↔ [𝑥 / 𝑦]𝜓) | 
| 7 | sbequ12r 2252 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 8 | sbequ12 2251 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ [𝑥 / 𝑦]𝜓)) | |
| 9 | 7, 8 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝑥 → (([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ (𝜑 ↔ [𝑥 / 𝑦]𝜓))) | 
| 10 | 3, 6, 9 | cbvalv1 2343 | 1 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝜓) ↔ ∀𝑥(𝜑 ↔ [𝑥 / 𝑦]𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: sbbibvv 2365 dfich2 47445 | 
| Copyright terms: Public domain | W3C validator |