MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcan Structured version   Visualization version   GIF version

Theorem sbcan 3772
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcan ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcan
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3730 . 2 ([𝐴 / 𝑥](𝜑𝜓) → 𝐴 ∈ V)
2 sbcex 3730 . . 3 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
32adantl 482 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → 𝐴 ∈ V)
4 dfsbcq2 3723 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
5 dfsbcq2 3723 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6 dfsbcq2 3723 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
75, 6anbi12d 631 . . 3 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
8 sban 2087 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
94, 7, 8vtoclbg 3506 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
101, 3, 9pm5.21nii 380 1 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  [wsb 2071  wcel 2110  Vcvv 3431  [wsbc 3720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-sbc 3721
This theorem is referenced by:  sbc3an  3791  sbcabel  3816  2nreu  4381  csbopg  4828  csbuni  4876  csbmpt12  5473  csbxp  5686  difopab  5739  sbcfung  6456  sbcfng  6595  sbcfg  6596  fmptsnd  7038  csbfrecsg  8091  f1od2  31052  esum2dlem  32056  bnj976  32753  bnj110  32834  bnj1040  32948  csboprabg  35497  csbmpo123  35498  f1omptsnlem  35503  mptsnunlem  35505  relowlpssretop  35531  csbfinxpg  35555  sbcani  36262  sbccom2lem  36278  brtrclfv2  41305  cotrclrcl  41320  frege124d  41339  sbiota1  42022  onfrALTlem5  42132  onfrALTlem4  42133  csbingVD  42474  onfrALTlem5VD  42475  onfrALTlem4VD  42476  csbxpgVD  42484  csbunigVD  42488
  Copyright terms: Public domain W3C validator