| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcan | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcan | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3766 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) → 𝐴 ∈ V) | |
| 2 | sbcex 3766 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 481 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) → 𝐴 ∈ V) |
| 4 | dfsbcq2 3759 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∧ 𝜓))) | |
| 5 | dfsbcq2 3759 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 6 | dfsbcq2 3759 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 7 | 5, 6 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
| 8 | sban 2081 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
| 9 | 4, 7, 8 | vtoclbg 3526 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
| 10 | 1, 3, 9 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 [wsb 2065 ∈ wcel 2109 Vcvv 3450 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 |
| This theorem is referenced by: sbc3an 3821 sbcabel 3844 2nreu 4410 csbopg 4858 csbuni 4903 csbmpt12 5520 csbxp 5741 difopabOLD 5797 sbcfung 6543 sbcfng 6688 sbcfg 6689 fmptsnd 7146 csbfrecsg 8266 f1od2 32651 esum2dlem 34089 bnj976 34774 bnj110 34855 bnj1040 34969 csboprabg 37325 csbmpo123 37326 f1omptsnlem 37331 mptsnunlem 37333 relowlpssretop 37359 csbfinxpg 37383 sbcani 38109 sbccom2lem 38125 minregex 43530 brtrclfv2 43723 cotrclrcl 43738 frege124d 43757 sbiota1 44430 onfrALTlem5 44539 onfrALTlem4 44540 csbingVD 44880 onfrALTlem5VD 44881 onfrALTlem4VD 44882 csbxpgVD 44890 csbunigVD 44894 rspesbcd 44934 |
| Copyright terms: Public domain | W3C validator |