| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcan | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcan | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3754 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) → 𝐴 ∈ V) | |
| 2 | sbcex 3754 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 481 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) → 𝐴 ∈ V) |
| 4 | dfsbcq2 3747 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∧ 𝜓))) | |
| 5 | dfsbcq2 3747 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 6 | dfsbcq2 3747 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 7 | 5, 6 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
| 8 | sban 2081 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
| 9 | 4, 7, 8 | vtoclbg 3514 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
| 10 | 1, 3, 9 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 [wsb 2065 ∈ wcel 2109 Vcvv 3438 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-sbc 3745 |
| This theorem is referenced by: sbc3an 3809 sbcabel 3832 2nreu 4397 csbopg 4845 csbuni 4890 csbmpt12 5504 csbxp 5723 sbcfung 6510 sbcfng 6653 sbcfg 6654 fmptsnd 7109 csbfrecsg 8224 f1od2 32677 esum2dlem 34061 bnj976 34746 bnj110 34827 bnj1040 34941 csboprabg 37306 csbmpo123 37307 f1omptsnlem 37312 mptsnunlem 37314 relowlpssretop 37340 csbfinxpg 37364 sbcani 38090 sbccom2lem 38106 minregex 43510 brtrclfv2 43703 cotrclrcl 43718 frege124d 43737 sbiota1 44410 onfrALTlem5 44519 onfrALTlem4 44520 csbingVD 44860 onfrALTlem5VD 44861 onfrALTlem4VD 44862 csbxpgVD 44870 csbunigVD 44874 rspesbcd 44914 |
| Copyright terms: Public domain | W3C validator |