MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcan Structured version   Visualization version   GIF version

Theorem sbcan 3803
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcan ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcan
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3763 . 2 ([𝐴 / 𝑥](𝜑𝜓) → 𝐴 ∈ V)
2 sbcex 3763 . . 3 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
32adantl 481 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → 𝐴 ∈ V)
4 dfsbcq2 3756 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
5 dfsbcq2 3756 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6 dfsbcq2 3756 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
75, 6anbi12d 632 . . 3 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
8 sban 2081 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
94, 7, 8vtoclbg 3523 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
101, 3, 9pm5.21nii 378 1 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  [wsb 2065  wcel 2109  Vcvv 3447  [wsbc 3753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-sbc 3754
This theorem is referenced by:  sbc3an  3818  sbcabel  3841  2nreu  4407  csbopg  4855  csbuni  4900  csbmpt12  5517  csbxp  5738  difopabOLD  5794  sbcfung  6540  sbcfng  6685  sbcfg  6686  fmptsnd  7143  csbfrecsg  8263  f1od2  32644  esum2dlem  34082  bnj976  34767  bnj110  34848  bnj1040  34962  csboprabg  37318  csbmpo123  37319  f1omptsnlem  37324  mptsnunlem  37326  relowlpssretop  37352  csbfinxpg  37376  sbcani  38102  sbccom2lem  38118  minregex  43523  brtrclfv2  43716  cotrclrcl  43731  frege124d  43750  sbiota1  44423  onfrALTlem5  44532  onfrALTlem4  44533  csbingVD  44873  onfrALTlem5VD  44874  onfrALTlem4VD  44875  csbxpgVD  44883  csbunigVD  44887  rspesbcd  44927
  Copyright terms: Public domain W3C validator