MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcan Structured version   Visualization version   GIF version

Theorem sbcan 3820
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcan ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcan
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3780 . 2 ([𝐴 / 𝑥](𝜑𝜓) → 𝐴 ∈ V)
2 sbcex 3780 . . 3 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
32adantl 481 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → 𝐴 ∈ V)
4 dfsbcq2 3773 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
5 dfsbcq2 3773 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6 dfsbcq2 3773 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
75, 6anbi12d 632 . . 3 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
8 sban 2079 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
94, 7, 8vtoclbg 3540 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
101, 3, 9pm5.21nii 378 1 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  [wsb 2063  wcel 2107  Vcvv 3463  [wsbc 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-sbc 3771
This theorem is referenced by:  sbc3an  3835  sbcabel  3858  2nreu  4424  csbopg  4871  csbuni  4916  csbmpt12  5542  csbxp  5765  difopabOLD  5821  sbcfung  6570  sbcfng  6713  sbcfg  6714  fmptsnd  7171  csbfrecsg  8291  f1od2  32668  esum2dlem  34068  bnj976  34766  bnj110  34847  bnj1040  34961  csboprabg  37306  csbmpo123  37307  f1omptsnlem  37312  mptsnunlem  37314  relowlpssretop  37340  csbfinxpg  37364  sbcani  38090  sbccom2lem  38106  minregex  43524  brtrclfv2  43717  cotrclrcl  43732  frege124d  43751  sbiota1  44425  onfrALTlem5  44534  onfrALTlem4  44535  csbingVD  44876  onfrALTlem5VD  44877  onfrALTlem4VD  44878  csbxpgVD  44886  csbunigVD  44890  rspesbcd  44930
  Copyright terms: Public domain W3C validator