| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcan | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcan | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3751 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) → 𝐴 ∈ V) | |
| 2 | sbcex 3751 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 481 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) → 𝐴 ∈ V) |
| 4 | dfsbcq2 3744 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∧ 𝜓))) | |
| 5 | dfsbcq2 3744 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 6 | dfsbcq2 3744 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 7 | 5, 6 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
| 8 | sban 2083 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
| 9 | 4, 7, 8 | vtoclbg 3512 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
| 10 | 1, 3, 9 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 [wsb 2067 ∈ wcel 2111 Vcvv 3436 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3742 |
| This theorem is referenced by: sbc3an 3806 sbcabel 3829 2nreu 4394 csbopg 4843 csbuni 4888 csbmpt12 5497 csbxp 5716 sbcfung 6505 sbcfng 6648 sbcfg 6649 fmptsnd 7103 csbfrecsg 8214 f1od2 32700 esum2dlem 34103 bnj976 34787 bnj110 34868 bnj1040 34982 csboprabg 37370 csbmpo123 37371 f1omptsnlem 37376 mptsnunlem 37378 relowlpssretop 37404 csbfinxpg 37428 sbcani 38154 sbccom2lem 38170 minregex 43573 brtrclfv2 43766 cotrclrcl 43781 frege124d 43800 sbiota1 44473 onfrALTlem5 44581 onfrALTlem4 44582 csbingVD 44922 onfrALTlem5VD 44923 onfrALTlem4VD 44924 csbxpgVD 44932 csbunigVD 44936 rspesbcd 44976 |
| Copyright terms: Public domain | W3C validator |