| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcan | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcan | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3747 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) → 𝐴 ∈ V) | |
| 2 | sbcex 3747 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 481 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) → 𝐴 ∈ V) |
| 4 | dfsbcq2 3740 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∧ 𝜓))) | |
| 5 | dfsbcq2 3740 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 6 | dfsbcq2 3740 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 7 | 5, 6 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
| 8 | sban 2085 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
| 9 | 4, 7, 8 | vtoclbg 3511 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
| 10 | 1, 3, 9 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 [wsb 2067 ∈ wcel 2113 Vcvv 3437 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-sbc 3738 |
| This theorem is referenced by: sbc3an 3802 sbcabel 3825 2nreu 4393 csbopg 4844 csbuni 4890 csbmpt12 5502 csbxp 5722 sbcfung 6512 sbcfng 6655 sbcfg 6656 fmptsnd 7111 csbfrecsg 8222 f1od2 32708 esum2dlem 34128 bnj976 34812 bnj110 34893 bnj1040 35007 csboprabg 37397 csbmpo123 37398 f1omptsnlem 37403 mptsnunlem 37405 relowlpssretop 37431 csbfinxpg 37455 sbcani 38171 sbccom2lem 38187 minregex 43654 brtrclfv2 43847 cotrclrcl 43862 frege124d 43881 sbiota1 44554 onfrALTlem5 44662 onfrALTlem4 44663 csbingVD 45003 onfrALTlem5VD 45004 onfrALTlem4VD 45005 csbxpgVD 45013 csbunigVD 45017 rspesbcd 45057 |
| Copyright terms: Public domain | W3C validator |