Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcan | Structured version Visualization version GIF version |
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
sbcan | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3721 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) → 𝐴 ∈ V) | |
2 | sbcex 3721 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
3 | 2 | adantl 481 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) → 𝐴 ∈ V) |
4 | dfsbcq2 3714 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∧ 𝜓))) | |
5 | dfsbcq2 3714 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
6 | dfsbcq2 3714 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
7 | 5, 6 | anbi12d 630 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
8 | sban 2084 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
9 | 4, 7, 8 | vtoclbg 3497 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) |
10 | 1, 3, 9 | pm5.21nii 379 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 [wsb 2068 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 |
This theorem is referenced by: sbc3an 3782 sbcabel 3807 2nreu 4372 csbopg 4819 csbuni 4867 csbmpt12 5463 csbxp 5676 difopab 5729 sbcfung 6442 sbcfng 6581 sbcfg 6582 fmptsnd 7023 csbfrecsg 8071 f1od2 30958 esum2dlem 31960 bnj976 32657 bnj110 32738 bnj1040 32852 csboprabg 35428 csbmpo123 35429 f1omptsnlem 35434 mptsnunlem 35436 relowlpssretop 35462 csbfinxpg 35486 sbcani 36193 sbccom2lem 36209 brtrclfv2 41224 cotrclrcl 41239 frege124d 41258 sbiota1 41941 onfrALTlem5 42051 onfrALTlem4 42052 csbingVD 42393 onfrALTlem5VD 42394 onfrALTlem4VD 42395 csbxpgVD 42403 csbunigVD 42407 |
Copyright terms: Public domain | W3C validator |