Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcori | Structured version Visualization version GIF version |
Description: Distribution of class substitution over disjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbcori.1 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) |
sbcori.2 | ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) |
Ref | Expression |
---|---|
sbcori | ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcor 3765 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) | |
2 | sbcori.1 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) | |
3 | sbcori.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) | |
4 | 2, 3 | orbi12i 915 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ↔ (𝜒 ∨ 𝜂)) |
5 | 1, 4 | bitri 278 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∨ wo 847 [wsbc 3712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-12 2177 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-sbc 3713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |