Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbceqbidf | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
Ref | Expression |
---|---|
sbceqbidf.1 | ⊢ Ⅎ𝑥𝜑 |
sbceqbidf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbceqbidf.3 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbceqbidf | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqbidf.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sbceqbidf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | sbceqbidf.3 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | abbid 2810 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
5 | 1, 4 | eleq12d 2833 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐵 ∈ {𝑥 ∣ 𝜒})) |
6 | df-sbc 3712 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
7 | df-sbc 3712 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝐵 ∈ {𝑥 ∣ 𝜒}) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 {cab 2715 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |