Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbceqbidf Structured version   Visualization version   GIF version

Theorem sbceqbidf 30032
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbidf.1 𝑥𝜑
sbceqbidf.2 (𝜑𝐴 = 𝐵)
sbceqbidf.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbceqbidf (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))

Proof of Theorem sbceqbidf
StepHypRef Expression
1 sbceqbidf.2 . . 3 (𝜑𝐴 = 𝐵)
2 sbceqbidf.1 . . . 4 𝑥𝜑
3 sbceqbidf.3 . . . 4 (𝜑 → (𝜓𝜒))
42, 3abbid 2846 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
51, 4eleq12d 2861 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐵 ∈ {𝑥𝜒}))
6 df-sbc 3683 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
7 df-sbc 3683 . 2 ([𝐵 / 𝑥]𝜒𝐵 ∈ {𝑥𝜒})
85, 6, 73bitr4g 306 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wnf 1746  wcel 2050  {cab 2759  [wsbc 3682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-12 2106  ax-ext 2751
This theorem depends on definitions:  df-bi 199  df-an 388  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2760  df-cleq 2772  df-clel 2847  df-sbc 3683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator