| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abbid | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2144 and ax-11 2160. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| abbid.1 | ⊢ Ⅎ𝑥𝜑 |
| abbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| abbid | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | abbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimi 2216 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 4 | abbi 2796 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 |
| This theorem is referenced by: rabbida4 3420 rabeqf 3429 sbcbid 3791 sbceqbidf 32466 opabdm 32594 opabrn 32595 fpwrelmap 32716 sticksstones16 42203 rabbida2 45177 rabbida3 45180 |
| Copyright terms: Public domain | W3C validator |