Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbid | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2139 and ax-11 2156. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbid.1 | ⊢ Ⅎ𝑥𝜑 |
abbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
abbid | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | abbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | alrimi 2209 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
4 | abbi1 2807 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 |
This theorem is referenced by: rabeqf 3405 rabeqiOLD 3407 sbcbid 3769 sbceqbidf 30736 opabdm 30852 opabrn 30853 fpwrelmap 30970 bj-rabbida2 35033 sticksstones16 40046 rabbida2 42570 rabbida3 42573 |
Copyright terms: Public domain | W3C validator |