MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbid Structured version   Visualization version   GIF version

Theorem abbid 2799
Description: Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2130 and ax-11 2147. (Revised by Wolf Lammen, 6-May-2023.)
Hypotheses
Ref Expression
abbid.1 𝑥𝜑
abbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
abbid (𝜑 → {𝑥𝜓} = {𝑥𝜒})

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3 𝑥𝜑
2 abbid.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimi 2202 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 abbi 2796 . 2 (∀𝑥(𝜓𝜒) → {𝑥𝜓} = {𝑥𝜒})
53, 4syl 17 1 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wnf 1778  {cab 2705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720
This theorem is referenced by:  rabbida4  3454  rabeqf  3463  rabeqiOLD  3468  sbcbid  3835  sbceqbidf  32298  opabdm  32414  opabrn  32415  fpwrelmap  32528  sticksstones16  41634  rabbida2  44498  rabbida3  44501
  Copyright terms: Public domain W3C validator