![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbid | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2137 and ax-11 2154. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbid.1 | ⊢ Ⅎ𝑥𝜑 |
abbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
abbid | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | abbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | alrimi 2206 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
4 | abbi 2800 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 Ⅎwnf 1785 {cab 2709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 |
This theorem is referenced by: rabbida4 3457 rabeqf 3466 rabeqiOLD 3471 sbcbid 3834 sbceqbidf 31714 opabdm 31827 opabrn 31828 fpwrelmap 31945 sticksstones16 40966 rabbida2 43806 rabbida3 43809 |
Copyright terms: Public domain | W3C validator |