MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbid Structured version   Visualization version   GIF version

Theorem abbid 2809
Description: Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2137 and ax-11 2154. (Revised by Wolf Lammen, 6-May-2023.)
Hypotheses
Ref Expression
abbid.1 𝑥𝜑
abbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
abbid (𝜑 → {𝑥𝜓} = {𝑥𝜒})

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3 𝑥𝜑
2 abbid.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimi 2206 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 abbi1 2806 . 2 (∀𝑥(𝜓𝜒) → {𝑥𝜓} = {𝑥𝜒})
53, 4syl 17 1 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1786  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730
This theorem is referenced by:  rabeqf  3415  rabeqiOLD  3417  sbcbid  3774  sbceqbidf  30835  opabdm  30951  opabrn  30952  fpwrelmap  31068  bj-rabbida2  35106  sticksstones16  40118  rabbida2  42681  rabbida3  42684
  Copyright terms: Public domain W3C validator