![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbid | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction form, with nonfreeness hypothesis). (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) Avoid ax-10 2129 and ax-11 2146. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbid.1 | ⊢ Ⅎ𝑥𝜑 |
abbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
abbid | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | abbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | alrimi 2201 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
4 | abbi 2793 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 Ⅎwnf 1777 {cab 2702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 |
This theorem is referenced by: rabbida4 3444 rabeqf 3454 sbcbid 3832 sbceqbidf 32363 opabdm 32480 opabrn 32481 fpwrelmap 32597 sticksstones16 41762 rabbida2 44635 rabbida3 44638 |
Copyright terms: Public domain | W3C validator |