| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcies | Structured version Visualization version GIF version | ||
| Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| Ref | Expression |
|---|---|
| sbcies.a | ⊢ 𝐴 = (𝐸‘𝑊) |
| sbcies.1 | ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcies | ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎]𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6896 | . 2 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) ∈ V) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → 𝑎 = (𝐸‘𝑤)) | |
| 3 | sbcies.a | . . . . . . 7 ⊢ 𝐴 = (𝐸‘𝑊) | |
| 4 | fveq2 6881 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) | |
| 5 | 3, 4 | eqtr4id 2790 | . . . . . 6 ⊢ (𝑤 = 𝑊 → 𝐴 = (𝐸‘𝑤)) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → 𝐴 = (𝐸‘𝑤)) |
| 7 | 2, 6 | eqtr4d 2774 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → 𝑎 = 𝐴) |
| 8 | sbcies.1 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → (𝜑 ↔ 𝜓)) |
| 10 | 9 | bicomd 223 | . 2 ⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → (𝜓 ↔ 𝜑)) |
| 11 | 1, 10 | sbcied 3814 | 1 ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎]𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Vcvv 3464 [wsbc 3770 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |