MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcom3vv Structured version   Visualization version   GIF version

Theorem sbcom3vv 2102
Description: Substituting 𝑦 for 𝑥 and then 𝑧 for 𝑦 is equivalent to substituting 𝑧 for both 𝑥 and 𝑦. Version of sbcom3 2544 with a disjoint variable condition using fewer axioms. (Contributed by NM, 27-May-1997.) (Revised by Giovanni Mascellani, 8-Apr-2018.) (Revised by BJ, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 19-Jan-2023.)
Assertion
Ref Expression
sbcom3vv ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbcom3vv
StepHypRef Expression
1 sbequ 2086 . . . 4 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
21pm5.74i 273 . . 3 ((𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑))
32albii 1816 . 2 (∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑))
4 sb6 2089 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑))
5 sb6 2089 . 2 ([𝑧 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑))
63, 4, 53bitr4i 305 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wal 1531  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1777  df-sb 2066
This theorem is referenced by:  sbievw2  2103  sbcov  2254
  Copyright terms: Public domain W3C validator