Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcom3vv | Structured version Visualization version GIF version |
Description: Substituting 𝑦 for 𝑥 and then 𝑧 for 𝑦 is equivalent to substituting 𝑧 for both 𝑥 and 𝑦. Version of sbcom3 2508 with a disjoint variable condition using fewer axioms. (Contributed by NM, 27-May-1997.) (Revised by Giovanni Mascellani, 8-Apr-2018.) (Revised by BJ, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 19-Jan-2023.) |
Ref | Expression |
---|---|
sbcom3vv | ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ 2085 | . . . 4 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
2 | 1 | pm5.74i 270 | . . 3 ⊢ ((𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
3 | 2 | albii 1820 | . 2 ⊢ (∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
4 | sb6 2087 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑)) | |
5 | sb6 2087 | . 2 ⊢ ([𝑧 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) | |
6 | 3, 4, 5 | 3bitr4i 302 | 1 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 [wsb 2066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 |
This theorem is referenced by: sbievw2 2098 sbcov 2248 |
Copyright terms: Public domain | W3C validator |