Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco Structured version   Visualization version   GIF version

Theorem sbco 2527
 Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See sbcov 2256 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) (New usage is discouraged.)
Assertion
Ref Expression
sbco ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco
StepHypRef Expression
1 sbcom3 2526 . 2 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑦]𝜑)
2 sbid 2255 . . 3 ([𝑦 / 𝑦]𝜑𝜑)
32sbbii 2082 . 2 ([𝑦 / 𝑥][𝑦 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
41, 3bitri 278 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209  [wsb 2070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-10 2143  ax-12 2176  ax-13 2380 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-ex 1783  df-nf 1787  df-sb 2071 This theorem is referenced by:  sbid2  2528  sbco3  2533
 Copyright terms: Public domain W3C validator