Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbeqal1 | Structured version Visualization version GIF version |
Description: If 𝑥 = 𝑦 always implies 𝑥 = 𝑧, then 𝑦 = 𝑧. (Contributed by Andrew Salmon, 2-Jun-2011.) |
Ref | Expression |
---|---|
sbeqal1 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) → 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb2 2480 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) → [𝑦 / 𝑥]𝑥 = 𝑧) | |
2 | equsb3 2103 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) → 𝑦 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: sbeqal1i 41906 |
Copyright terms: Public domain | W3C validator |