| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb2 | Structured version Visualization version GIF version | ||
| Description: One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb6 2085) or a nonfreeness hypothesis (sb6f 2502). Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 13-May-1993.) Revise df-sb 2065. (Revised by Wolf Lammen, 26-Jul-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sb2 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝑦 → 𝜑) → 𝜑)) | |
| 2 | 1 | al2imi 1815 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥𝜑)) |
| 3 | stdpc4 2068 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑)) |
| 5 | sb4b 2480 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 6 | 5 | biimprd 248 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑)) |
| 7 | 4, 6 | pm2.61i 182 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: hbsb2 2487 hbsb2a 2489 hbsb2e 2491 equsb1 2496 equsb2 2497 dfsb2 2498 sb6f 2502 sbeqal1 44417 |
| Copyright terms: Public domain | W3C validator |