Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb2 | Structured version Visualization version GIF version |
Description: One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb6 2089) or a nonfreeness hypothesis (sb6f 2501). Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 13-May-1993.) Revise df-sb 2069. (Revised by Wolf Lammen, 26-Jul-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb2 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝑦 → 𝜑) → 𝜑)) | |
2 | 1 | al2imi 1819 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥𝜑)) |
3 | stdpc4 2072 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑)) |
5 | sb4b 2475 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
6 | 5 | biimprd 247 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑)) |
7 | 4, 6 | pm2.61i 182 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: sb3OLD 2481 hbsb2 2486 hbsb2a 2488 hbsb2e 2490 equsb1 2495 equsb2 2496 dfsb2 2497 sb6f 2501 sbeqal1 41905 |
Copyright terms: Public domain | W3C validator |