| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb2 | Structured version Visualization version GIF version | ||
| Description: One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb6 2088) or a nonfreeness hypothesis (sb6f 2497). Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 13-May-1993.) Revise df-sb 2068. (Revised by Wolf Lammen, 26-Jul-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sb2 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝑦 → 𝜑) → 𝜑)) | |
| 2 | 1 | al2imi 1816 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥𝜑)) |
| 3 | stdpc4 2071 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑)) |
| 5 | sb4b 2475 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 6 | 5 | biimprd 248 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑)) |
| 7 | 4, 6 | pm2.61i 182 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: hbsb2 2482 hbsb2a 2484 hbsb2e 2486 equsb1 2491 equsb2 2492 dfsb2 2493 sb6f 2497 sbeqal1 44437 |
| Copyright terms: Public domain | W3C validator |