MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb2 Structured version   Visualization version   GIF version

Theorem sb2 2500
Description: One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb6 2089) or a non-freeness hypothesis (sb6f 2533). Usage of this theorem is discouraged because it depends on ax-13 2386. (Contributed by NM, 13-May-1993.) Revise df-sb 2066. (Revised by Wolf Lammen, 26-Jul-2023.) (New usage is discouraged.)
Assertion
Ref Expression
sb2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)

Proof of Theorem sb2
StepHypRef Expression
1 pm2.27 42 . . . 4 (𝑥 = 𝑦 → ((𝑥 = 𝑦𝜑) → 𝜑))
21al2imi 1812 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥𝜑))
3 stdpc4 2069 . . 3 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
42, 3syl6 35 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
5 sb4b 2495 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
65biimprd 250 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
74, 6pm2.61i 184 1 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1531  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-10 2141  ax-12 2172  ax-13 2386
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1777  df-nf 1781  df-sb 2066
This theorem is referenced by:  sb3OLD  2501  hbsb2  2517  hbsb2a  2519  hbsb2e  2521  equsb1  2526  equsb2  2527  dfsb2  2528  sbequiOLD  2530  sb6f  2533  sbi1OLD  2538  sbeqal1  40723
  Copyright terms: Public domain W3C validator