| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsb3 | Structured version Visualization version GIF version | ||
| Description: Substitution in an equality. (Contributed by Raph Levien and FL, 4-Dec-2005.) Reduce axiom usage. (Revised by Wolf Lammen, 23-Jul-2023.) |
| Ref | Expression |
|---|---|
| equsb3 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ1 2024 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 = 𝑧 ↔ 𝑤 = 𝑧)) | |
| 2 | equequ1 2024 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 3 | 1, 2 | sbievw2 2098 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 |
| This theorem is referenced by: equsb1v 2105 mo3 2563 sb8eulem 2597 sb8iota 6495 mo5f 32470 ss-ax8 36243 mptsnunlem 37356 wl-equsb3 37574 wl-mo3t 37594 wl-sb8eut 37596 wl-sb8eutv 37597 frege55lem1b 43919 sbeqal1 44422 icheq 47476 |
| Copyright terms: Public domain | W3C validator |