MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb3 Structured version   Visualization version   GIF version

Theorem equsb3 2103
Description: Substitution in an equality. (Contributed by Raph Levien and FL, 4-Dec-2005.) Reduce axiom usage. (Revised by Wolf Lammen, 23-Jul-2023.)
Assertion
Ref Expression
equsb3 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Distinct variable group:   𝑥,𝑧

Proof of Theorem equsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 equequ1 2024 . 2 (𝑥 = 𝑤 → (𝑥 = 𝑧𝑤 = 𝑧))
2 equequ1 2024 . 2 (𝑤 = 𝑦 → (𝑤 = 𝑧𝑦 = 𝑧))
31, 2sbievw2 2098 1 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  equsb1v  2105  mo3  2567  sb8eulem  2601  sb8iota  6537  mo5f  32517  ss-ax8  36191  mptsnunlem  37304  wl-equsb3  37510  wl-mo3t  37530  wl-sb8eut  37532  wl-sb8eutv  37533  frege55lem1b  43857  sbeqal1  44367  icheq  47336
  Copyright terms: Public domain W3C validator