Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equsb3 | Structured version Visualization version GIF version |
Description: Substitution in an equality. (Contributed by Raph Levien and FL, 4-Dec-2005.) Reduce axiom usage. (Revised by Wolf Lammen, 23-Jul-2023.) |
Ref | Expression |
---|---|
equsb3 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 2033 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 = 𝑧 ↔ 𝑤 = 𝑧)) | |
2 | equequ1 2033 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
3 | 1, 2 | sbievw2 2103 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-sb 2071 |
This theorem is referenced by: equsb1v 2107 mo3 2563 sb8eulem 2597 sb8iota 6350 mo5f 30556 mptsnunlem 35246 wl-equsb3 35448 wl-mo3t 35468 wl-sb8eut 35469 frege55lem1b 41180 sbeqal1 41689 icheq 44587 |
Copyright terms: Public domain | W3C validator |