MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb3 Structured version   Visualization version   GIF version

Theorem equsb3 2101
Description: Substitution in an equality. (Contributed by Raph Levien and FL, 4-Dec-2005.) Reduce axiom usage. (Revised by Wolf Lammen, 23-Jul-2023.)
Assertion
Ref Expression
equsb3 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Distinct variable group:   𝑥,𝑧

Proof of Theorem equsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 equequ1 2028 . 2 (𝑥 = 𝑤 → (𝑥 = 𝑧𝑤 = 𝑧))
2 equequ1 2028 . 2 (𝑤 = 𝑦 → (𝑤 = 𝑧𝑦 = 𝑧))
31, 2sbievw2 2099 1 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068
This theorem is referenced by:  equsb1v  2103  mo3  2564  sb8eulem  2598  sb8iota  6403  mo5f  30837  mptsnunlem  35509  wl-equsb3  35711  wl-mo3t  35731  wl-sb8eut  35732  frege55lem1b  41503  sbeqal1  42016  icheq  44914
  Copyright terms: Public domain W3C validator