![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsb3 | Structured version Visualization version GIF version |
Description: Substitution in an equality. (Contributed by Raph Levien and FL, 4-Dec-2005.) Reduce axiom usage. (Revised by Wolf Lammen, 23-Jul-2023.) |
Ref | Expression |
---|---|
equsb3 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 2024 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 = 𝑧 ↔ 𝑤 = 𝑧)) | |
2 | equequ1 2024 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
3 | 1, 2 | sbievw2 2098 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 |
This theorem is referenced by: equsb1v 2105 mo3 2567 sb8eulem 2601 sb8iota 6537 mo5f 32517 ss-ax8 36191 mptsnunlem 37304 wl-equsb3 37510 wl-mo3t 37530 wl-sb8eut 37532 wl-sb8eutv 37533 frege55lem1b 43857 sbeqal1 44367 icheq 47336 |
Copyright terms: Public domain | W3C validator |