Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbeqal1i Structured version   Visualization version   GIF version

Theorem sbeqal1i 41879
Description: Suppose you know 𝑥 = 𝑦 implies 𝑥 = 𝑧, assuming 𝑥 and 𝑧 are distinct. Then, 𝑦 = 𝑧. (Contributed by Andrew Salmon, 3-Jun-2011.)
Hypothesis
Ref Expression
sbeqal1i.1 (𝑥 = 𝑦𝑥 = 𝑧)
Assertion
Ref Expression
sbeqal1i 𝑦 = 𝑧
Distinct variable group:   𝑥,𝑧

Proof of Theorem sbeqal1i
StepHypRef Expression
1 sbeqal1 41878 . 2 (∀𝑥(𝑥 = 𝑦𝑥 = 𝑧) → 𝑦 = 𝑧)
2 sbeqal1i.1 . 2 (𝑥 = 𝑦𝑥 = 𝑧)
31, 2mpg 1805 1 𝑦 = 𝑧
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2143  ax-12 2177  ax-13 2373
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792  df-sb 2073
This theorem is referenced by:  sbeqal2i  41880
  Copyright terms: Public domain W3C validator