Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbeqal2i Structured version   Visualization version   GIF version

Theorem sbeqal2i 42018
Description: If 𝑥 = 𝑦 implies 𝑥 = 𝑧, then we can infer 𝑧 = 𝑦. (Contributed by Andrew Salmon, 3-Jun-2011.)
Hypothesis
Ref Expression
sbeqal1i.1 (𝑥 = 𝑦𝑥 = 𝑧)
Assertion
Ref Expression
sbeqal2i 𝑧 = 𝑦
Distinct variable group:   𝑥,𝑧

Proof of Theorem sbeqal2i
StepHypRef Expression
1 sbeqal1i.1 . . 3 (𝑥 = 𝑦𝑥 = 𝑧)
21sbeqal1i 42017 . 2 𝑦 = 𝑧
32eqcomi 2747 1 𝑧 = 𝑦
Colors of variables: wff setvar class
Syntax hints:
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator