Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralbi12f Structured version   Visualization version   GIF version

Theorem ralbi12f 38189
Description: Equality deduction for restricted universal quantification. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
ralbi12f.1 𝑥𝐴
ralbi12f.2 𝑥𝐵
Assertion
Ref Expression
ralbi12f ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))

Proof of Theorem ralbi12f
StepHypRef Expression
1 ralbi 3093 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓))
2 ralbi12f.1 . . 3 𝑥𝐴
3 ralbi12f.2 . . 3 𝑥𝐵
42, 3raleqf 3339 . 2 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
51, 4sylan9bbr 510 1 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnfc 2884  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator