|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > spsbbi | Structured version Visualization version GIF version | ||
| Description: Biconditional property for substitution. Closed form of sbbii 2076. Specialization of biconditional. (Contributed by NM, 2-Jun-1993.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| spsbbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimp 215 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∀𝑥(𝜑 → 𝜓)) | 
| 3 | spsbim 2072 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | 
| 5 | biimpr 220 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 6 | 5 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ∀𝑥(𝜓 → 𝜑)) | 
| 7 | spsbim 2072 | . . 3 ⊢ (∀𝑥(𝜓 → 𝜑) → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑)) | 
| 9 | 4, 8 | impbid 212 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-sb 2065 | 
| This theorem is referenced by: sbbidv 2079 sbbid 2246 abbi 2807 sbeqi 38166 | 
| Copyright terms: Public domain | W3C validator |