MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbbi Structured version   Visualization version   GIF version

Theorem spsbbi 2077
Description: Biconditional property for substitution. Closed form of sbbii 2080. Specialization of biconditional. (Contributed by NM, 2-Jun-1993.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.)
Assertion
Ref Expression
spsbbi (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓))

Proof of Theorem spsbbi
StepHypRef Expression
1 biimp 214 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
21alimi 1815 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓))
3 spsbim 2076 . . 3 (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
42, 3syl 17 . 2 (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
5 biimpr 219 . . . 4 ((𝜑𝜓) → (𝜓𝜑))
65alimi 1815 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥(𝜓𝜑))
7 spsbim 2076 . . 3 (∀𝑥(𝜓𝜑) → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑))
86, 7syl 17 . 2 (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑))
94, 8impbid 211 1 (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-sb 2069
This theorem is referenced by:  sbbidv  2083  sbbid  2241  abbi1  2807  sbeqi  36244
  Copyright terms: Public domain W3C validator