| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ | Structured version Visualization version GIF version | ||
| Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2066. (Revised by BJ, 30-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ2 2026 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢 = 𝑥 ↔ 𝑢 = 𝑦)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
| 3 | 2 | albidv 1920 | . 2 ⊢ (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
| 4 | df-sb 2066 | . 2 ⊢ ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
| 5 | df-sb 2066 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbequi 2085 sbcom3vv 2098 sbco2vv 2100 sbco4lem 2102 sbco4 2103 sbcom2 2174 drsb2 2267 sbco2v 2330 sbcom3 2505 sbco2 2510 sb10f 2526 sb8eulem 2592 eleq1ab 2710 cbvralsvwOLDOLD 3295 cbvrexsvwOLD 3296 cbvralf 3336 cbvralsv 3342 cbvrexsv 3343 cbvreuwOLD 3389 cbvreu 3400 cbvrabwOLD 3445 cbvrab 3449 cbvreucsf 3909 cbvrabcsf 3910 cbvopab1g 5185 cbvmptf 5210 cbvmptfg 5211 cbviota 6476 sb8iota 6478 cbvriota 7360 tfis 7834 tfinds 7839 findes 7879 uzind4s 12874 wl-sbcom2d-lem1 37554 wl-sb8eut 37573 wl-sb8eutv 37574 wl-dfclab 37591 sbeqi 38160 disjinfi 45193 2reu8i 47118 |
| Copyright terms: Public domain | W3C validator |