| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ | Structured version Visualization version GIF version | ||
| Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2066. (Revised by BJ, 30-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ2 2026 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢 = 𝑥 ↔ 𝑢 = 𝑦)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
| 3 | 2 | albidv 1920 | . 2 ⊢ (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
| 4 | df-sb 2066 | . 2 ⊢ ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
| 5 | df-sb 2066 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbequi 2085 sbcom3vv 2098 sbco2vv 2100 sbco4lem 2102 sbco4 2103 sbcom2 2174 drsb2 2267 sbco2v 2330 sbcom3 2504 sbco2 2509 sb10f 2525 sb8eulem 2591 eleq1ab 2709 cbvralsvwOLDOLD 3293 cbvrexsvwOLD 3294 cbvralf 3334 cbvralsv 3340 cbvrexsv 3341 cbvreu 3397 cbvrabwOLD 3442 cbvrab 3446 cbvreucsf 3906 cbvrabcsf 3907 cbvopab1g 5182 cbvmptf 5207 cbvmptfg 5208 cbviota 6473 sb8iota 6475 cbvriota 7357 tfis 7831 tfinds 7836 findes 7876 uzind4s 12867 wl-sbcom2d-lem1 37547 wl-sb8eut 37566 wl-sb8eutv 37567 wl-dfclab 37584 sbeqi 38153 disjinfi 45186 2reu8i 47114 |
| Copyright terms: Public domain | W3C validator |