MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ Structured version   Visualization version   GIF version

Theorem sbequ 2087
Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2069. (Revised by BJ, 30-Dec-2020.)
Assertion
Ref Expression
sbequ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))

Proof of Theorem sbequ
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 equequ2 2030 . . . 4 (𝑥 = 𝑦 → (𝑢 = 𝑥𝑢 = 𝑦))
21imbi1d 341 . . 3 (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑))))
32albidv 1924 . 2 (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑))))
4 df-sb 2069 . 2 ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)))
5 df-sb 2069 . 2 ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑)))
63, 4, 53bitr4g 313 1 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by:  sbequi  2088  sbcom3vv  2100  sbco2vv  2102  sbcom2  2163  drsb2  2261  sbco2v  2331  sbcom3  2510  sbco2  2515  sb10f  2532  sb8eulem  2598  eleq1ab  2717  cbvralfwOLD  3359  cbvralf  3361  cbvreuw  3365  cbvreu  3370  cbvralsvw  3391  cbvrexsvw  3392  cbvralsv  3393  cbvrexsv  3394  cbvrabw  3414  cbvrab  3415  cbvreucsf  3875  cbvrabcsf  3876  ss2abdv  3993  cbvopab1g  5146  cbvmptf  5179  cbvmptfg  5180  cbviota  6386  sb8iota  6388  cbvriota  7226  tfis  7676  tfinds  7681  findes  7723  uzind4s  12577  wl-sbcom2d-lem1  35641  wl-sb8eut  35659  wl-dfclab  35674  sbeqi  36244  disjinfi  42620  2reu8i  44492
  Copyright terms: Public domain W3C validator