![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ | Structured version Visualization version GIF version |
Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2065. (Revised by BJ, 30-Dec-2020.) |
Ref | Expression |
---|---|
sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 2025 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢 = 𝑥 ↔ 𝑢 = 𝑦)) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
3 | 2 | albidv 1919 | . 2 ⊢ (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
4 | df-sb 2065 | . 2 ⊢ ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
5 | df-sb 2065 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 |
This theorem is referenced by: sbequi 2084 sbcom3vv 2097 sbco2vv 2099 sbco4lem 2101 sbco4 2102 sbcom2 2174 drsb2 2267 sbco2v 2336 sbcom3 2514 sbco2 2519 sb10f 2535 sb8eulem 2601 eleq1ab 2719 cbvralsvwOLDOLD 3326 cbvrexsvwOLD 3327 cbvralf 3368 cbvralsv 3374 cbvrexsv 3375 cbvreuwOLD 3423 cbvreu 3435 cbvrabwOLD 3482 cbvrab 3487 cbvreucsf 3968 cbvrabcsf 3969 cbvopab1g 5242 cbvmptf 5275 cbvmptfg 5276 cbviota 6535 sb8iota 6537 cbvriota 7418 tfis 7892 tfinds 7897 findes 7940 uzind4s 12973 wl-sbcom2d-lem1 37513 wl-sb8eut 37532 wl-sb8eutv 37533 wl-dfclab 37550 sbeqi 38119 disjinfi 45099 2reu8i 47028 |
Copyright terms: Public domain | W3C validator |