![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ | Structured version Visualization version GIF version |
Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2062. (Revised by BJ, 30-Dec-2020.) |
Ref | Expression |
---|---|
sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 2022 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢 = 𝑥 ↔ 𝑢 = 𝑦)) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
3 | 2 | albidv 1917 | . 2 ⊢ (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
4 | df-sb 2062 | . 2 ⊢ ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
5 | df-sb 2062 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 [wsb 2061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 |
This theorem is referenced by: sbequi 2081 sbcom3vv 2094 sbco2vv 2096 sbco4lem 2098 sbco4 2099 sbcom2 2170 drsb2 2263 sbco2v 2330 sbcom3 2508 sbco2 2513 sb10f 2529 sb8eulem 2595 eleq1ab 2713 cbvralsvwOLDOLD 3317 cbvrexsvwOLD 3318 cbvralf 3357 cbvralsv 3363 cbvrexsv 3364 cbvreuwOLD 3412 cbvreu 3424 cbvrabwOLD 3471 cbvrab 3476 cbvreucsf 3954 cbvrabcsf 3955 cbvopab1g 5223 cbvmptf 5256 cbvmptfg 5257 cbviota 6524 sb8iota 6526 cbvriota 7400 tfis 7875 tfinds 7880 findes 7922 uzind4s 12947 wl-sbcom2d-lem1 37539 wl-sb8eut 37558 wl-sb8eutv 37559 wl-dfclab 37576 sbeqi 38145 disjinfi 45134 2reu8i 47062 |
Copyright terms: Public domain | W3C validator |