| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ | Structured version Visualization version GIF version | ||
| Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2065. (Revised by BJ, 30-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ2 2025 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢 = 𝑥 ↔ 𝑢 = 𝑦)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
| 3 | 2 | albidv 1920 | . 2 ⊢ (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
| 4 | df-sb 2065 | . 2 ⊢ ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
| 5 | df-sb 2065 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 |
| This theorem is referenced by: sbequi 2084 sbcom3vv 2097 sbco2vv 2099 sbco4lem 2101 sbco4 2102 sbcom2 2173 drsb2 2266 sbco2v 2331 sbcom3 2510 sbco2 2515 sb10f 2531 sb8eulem 2597 eleq1ab 2715 cbvralsvwOLDOLD 3299 cbvrexsvwOLD 3300 cbvralf 3339 cbvralsv 3345 cbvrexsv 3346 cbvreuwOLD 3394 cbvreu 3407 cbvrabwOLD 3453 cbvrab 3458 cbvreucsf 3918 cbvrabcsf 3919 cbvopab1g 5194 cbvmptf 5221 cbvmptfg 5222 cbviota 6493 sb8iota 6495 cbvriota 7375 tfis 7850 tfinds 7855 findes 7896 uzind4s 12924 wl-sbcom2d-lem1 37577 wl-sb8eut 37596 wl-sb8eutv 37597 wl-dfclab 37614 sbeqi 38183 disjinfi 45216 2reu8i 47142 |
| Copyright terms: Public domain | W3C validator |