MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ Structured version   Visualization version   GIF version

Theorem sbequ 2090
Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2070. (Revised by BJ, 30-Dec-2020.)
Assertion
Ref Expression
sbequ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))

Proof of Theorem sbequ
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 equequ2 2033 . . . 4 (𝑥 = 𝑦 → (𝑢 = 𝑥𝑢 = 𝑦))
21imbi1d 344 . . 3 (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑))))
32albidv 1921 . 2 (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑))))
4 df-sb 2070 . 2 ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)))
5 df-sb 2070 . 2 ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑)))
63, 4, 53bitr4g 316 1 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wal 1535  [wsb 2069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-sb 2070
This theorem is referenced by:  sbequi  2091  sbcom3vv  2106  sbco2vv  2108  sbcom2  2168  drsb2  2267  sbco2v  2352  sbcom3  2548  sbco2  2553  sb10f  2571  sb8eulem  2684  eleq1ab  2801  cbvralfw  3437  cbvralf  3439  cbvreuw  3443  cbvreu  3447  cbvralsvw  3467  cbvrexsvw  3468  cbvralsv  3469  cbvrexsv  3470  cbvrabw  3489  cbvrab  3490  cbvreucsf  3927  cbvrabcsf  3928  cbvopab1g  5140  cbvmptf  5165  cbvmptfg  5166  cbviota  6323  sb8iota  6325  cbvriota  7127  tfis  7569  tfinds  7574  findes  7612  uzind4s  12309  wl-sbcom2d-lem1  34810  wl-sb8eut  34828  wl-dfclab  34843  sbeqi  35452  disjinfi  41474  2reu8i  43332
  Copyright terms: Public domain W3C validator