Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ | Structured version Visualization version GIF version |
Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2069. (Revised by BJ, 30-Dec-2020.) |
Ref | Expression |
---|---|
sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 2030 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢 = 𝑥 ↔ 𝑢 = 𝑦)) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
3 | 2 | albidv 1924 | . 2 ⊢ (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
4 | df-sb 2069 | . 2 ⊢ ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
5 | df-sb 2069 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 |
This theorem is referenced by: sbequi 2088 sbcom3vv 2100 sbco2vv 2102 sbcom2 2163 drsb2 2261 sbco2v 2331 sbcom3 2510 sbco2 2515 sb10f 2532 sb8eulem 2598 eleq1ab 2717 cbvralfwOLD 3359 cbvralf 3361 cbvreuw 3365 cbvreu 3370 cbvralsvw 3391 cbvrexsvw 3392 cbvralsv 3393 cbvrexsv 3394 cbvrabw 3414 cbvrab 3415 cbvreucsf 3875 cbvrabcsf 3876 ss2abdv 3993 cbvopab1g 5146 cbvmptf 5179 cbvmptfg 5180 cbviota 6386 sb8iota 6388 cbvriota 7226 tfis 7676 tfinds 7681 findes 7723 uzind4s 12577 wl-sbcom2d-lem1 35641 wl-sb8eut 35659 wl-dfclab 35674 sbeqi 36244 disjinfi 42620 2reu8i 44492 |
Copyright terms: Public domain | W3C validator |