| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ | Structured version Visualization version GIF version | ||
| Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2068. (Revised by BJ, 30-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ2 2027 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢 = 𝑥 ↔ 𝑢 = 𝑦)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
| 3 | 2 | albidv 1921 | . 2 ⊢ (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑)))) |
| 4 | df-sb 2068 | . 2 ⊢ ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
| 5 | df-sb 2068 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢 → 𝜑))) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sbequi 2087 sbcom3vv 2100 sbco2vv 2102 sbco4lem 2104 sbco4 2105 sbcom2 2176 drsb2 2269 sbco2v 2332 sbcom3 2506 sbco2 2511 sb10f 2527 sb8eulem 2593 eleq1ab 2711 cbvralsvwOLDOLD 3286 cbvrexsvwOLD 3287 cbvralf 3326 cbvralsv 3332 cbvrexsv 3333 cbvreu 3387 cbvrabwOLD 3431 cbvrab 3435 cbvreucsf 3889 cbvrabcsf 3890 cbvopab1g 5164 cbvmptf 5189 cbvmptfg 5190 cbviota 6446 sb8iota 6448 cbvriota 7316 tfis 7785 tfinds 7790 findes 7830 uzind4s 12806 wl-sbcom2d-lem1 37601 wl-sb8eut 37620 wl-sb8eutv 37621 wl-dfclab 37638 sbeqi 38207 disjinfi 45237 2reu8i 47152 |
| Copyright terms: Public domain | W3C validator |