MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ Structured version   Visualization version   GIF version

Theorem sbequ 2083
Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2065. (Revised by BJ, 30-Dec-2020.)
Assertion
Ref Expression
sbequ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))

Proof of Theorem sbequ
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 equequ2 2025 . . . 4 (𝑥 = 𝑦 → (𝑢 = 𝑥𝑢 = 𝑦))
21imbi1d 341 . . 3 (𝑥 = 𝑦 → ((𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)) ↔ (𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑))))
32albidv 1920 . 2 (𝑥 = 𝑦 → (∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)) ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑))))
4 df-sb 2065 . 2 ([𝑥 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑥 → ∀𝑧(𝑧 = 𝑢𝜑)))
5 df-sb 2065 . 2 ([𝑦 / 𝑧]𝜑 ↔ ∀𝑢(𝑢 = 𝑦 → ∀𝑧(𝑧 = 𝑢𝜑)))
63, 4, 53bitr4g 314 1 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065
This theorem is referenced by:  sbequi  2084  sbcom3vv  2097  sbco2vv  2099  sbco4lem  2101  sbco4  2102  sbcom2  2173  drsb2  2266  sbco2v  2331  sbcom3  2510  sbco2  2515  sb10f  2531  sb8eulem  2597  eleq1ab  2715  cbvralsvwOLDOLD  3299  cbvrexsvwOLD  3300  cbvralf  3339  cbvralsv  3345  cbvrexsv  3346  cbvreuwOLD  3394  cbvreu  3407  cbvrabwOLD  3453  cbvrab  3458  cbvreucsf  3918  cbvrabcsf  3919  cbvopab1g  5194  cbvmptf  5221  cbvmptfg  5222  cbviota  6493  sb8iota  6495  cbvriota  7375  tfis  7850  tfinds  7855  findes  7896  uzind4s  12924  wl-sbcom2d-lem1  37577  wl-sb8eut  37596  wl-sb8eutv  37597  wl-dfclab  37614  sbeqi  38183  disjinfi  45216  2reu8i  47142
  Copyright terms: Public domain W3C validator