| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbimdv | Structured version Visualization version GIF version | ||
| Description: Deduction substituting both sides of an implication, with 𝜑 and 𝑥 disjoint. See also sbimd 2246. (Contributed by Wolf Lammen, 6-May-2023.) Revise df-sb 2066. (Revised by Steven Nguyen, 6-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| sbimdv | ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
| 3 | spsbim 2073 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: sbcimdv 3839 ss2abdv 4046 |
| Copyright terms: Public domain | W3C validator |