|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2sbbii | Structured version Visualization version GIF version | ||
| Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| 2sbbii | ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | sbbii 2076 | . 2 ⊢ ([𝑢 / 𝑦]𝜑 ↔ [𝑢 / 𝑦]𝜓) | 
| 3 | 2 | sbbii 2076 | 1 ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-sb 2065 | 
| This theorem is referenced by: sbco4lemOLD 2174 ichcircshi 47441 ichbi12i 47447 icheq 47449 ichal 47453 | 
| Copyright terms: Public domain | W3C validator |