MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sbbii Structured version   Visualization version   GIF version

Theorem 2sbbii 2080
Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023.)
Hypothesis
Ref Expression
sbbii.1 (𝜑𝜓)
Assertion
Ref Expression
2sbbii ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)

Proof of Theorem 2sbbii
StepHypRef Expression
1 sbbii.1 . . 3 (𝜑𝜓)
21sbbii 2079 . 2 ([𝑢 / 𝑦]𝜑 ↔ [𝑢 / 𝑦]𝜓)
32sbbii 2079 1 ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-sb 2068
This theorem is referenced by:  sbco4lem  2273  sbco4lemOLD  2274  ichcircshi  44906  ichbi12i  44912  icheq  44914  ichal  44918
  Copyright terms: Public domain W3C validator