Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sbbii | Structured version Visualization version GIF version |
Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2sbbii | ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | sbbii 2080 | . 2 ⊢ ([𝑢 / 𝑦]𝜑 ↔ [𝑢 / 𝑦]𝜓) |
3 | 2 | sbbii 2080 | 1 ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-sb 2069 |
This theorem is referenced by: sbco4lem 2276 sbco4lemOLD 2277 ichcircshi 44794 ichbi12i 44800 icheq 44802 ichal 44806 |
Copyright terms: Public domain | W3C validator |