| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sbbii | Structured version Visualization version GIF version | ||
| Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2sbbii | ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | sbbii 2077 | . 2 ⊢ ([𝑢 / 𝑦]𝜑 ↔ [𝑢 / 𝑦]𝜓) |
| 3 | 2 | sbbii 2077 | 1 ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: sbco4lemOLD 2175 ichcircshi 47435 ichbi12i 47441 icheq 47443 ichal 47447 |
| Copyright terms: Public domain | W3C validator |