MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimdv Structured version   Visualization version   GIF version

Theorem sbcimdv 3786
Description: Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1814). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024.)
Hypothesis
Ref Expression
sbcimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbcimdv (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem sbcimdv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sbc 3712 . . . 4 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
2 dfclel 2818 . . . 4 (𝐴 ∈ {𝑥𝜓} ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜓}))
3 df-clab 2716 . . . . . 6 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
43anbi2i 622 . . . . 5 ((𝑦 = 𝐴𝑦 ∈ {𝑥𝜓}) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓))
54exbii 1851 . . . 4 (∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜓}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓))
61, 2, 53bitri 296 . . 3 ([𝐴 / 𝑥]𝜓 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓))
76biimpi 215 . 2 ([𝐴 / 𝑥]𝜓 → ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓))
8 sbcimdv.1 . . . . 5 (𝜑 → (𝜓𝜒))
98sbimdv 2082 . . . 4 (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))
109anim2d 611 . . 3 (𝜑 → ((𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓) → (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒)))
1110eximdv 1921 . 2 (𝜑 → (∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓) → ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒)))
12 df-sbc 3712 . . . 4 ([𝐴 / 𝑥]𝜒𝐴 ∈ {𝑥𝜒})
13 dfclel 2818 . . . 4 (𝐴 ∈ {𝑥𝜒} ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜒}))
14 df-clab 2716 . . . . . 6 (𝑦 ∈ {𝑥𝜒} ↔ [𝑦 / 𝑥]𝜒)
1514anbi2i 622 . . . . 5 ((𝑦 = 𝐴𝑦 ∈ {𝑥𝜒}) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒))
1615exbii 1851 . . . 4 (∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜒}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒))
1712, 13, 163bitrri 297 . . 3 (∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒) ↔ [𝐴 / 𝑥]𝜒)
1817biimpi 215 . 2 (∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒) → [𝐴 / 𝑥]𝜒)
197, 11, 18syl56 36 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  {cab 2715  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-clel 2817  df-sbc 3712
This theorem is referenced by:  esum2dlem  31960
  Copyright terms: Public domain W3C validator