Step | Hyp | Ref
| Expression |
1 | | df-sbc 3712 |
. . . 4
⊢
([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) |
2 | | dfclel 2818 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
3 | | df-clab 2716 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) |
4 | 3 | anbi2i 622 |
. . . . 5
⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓)) |
5 | 4 | exbii 1851 |
. . . 4
⊢
(∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓)) |
6 | 1, 2, 5 | 3bitri 296 |
. . 3
⊢
([𝐴 / 𝑥]𝜓 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓)) |
7 | 6 | biimpi 215 |
. 2
⊢
([𝐴 / 𝑥]𝜓 → ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓)) |
8 | | sbcimdv.1 |
. . . . 5
⊢ (𝜑 → (𝜓 → 𝜒)) |
9 | 8 | sbimdv 2082 |
. . . 4
⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
10 | 9 | anim2d 611 |
. . 3
⊢ (𝜑 → ((𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓) → (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒))) |
11 | 10 | eximdv 1921 |
. 2
⊢ (𝜑 → (∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜓) → ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒))) |
12 | | df-sbc 3712 |
. . . 4
⊢
([𝐴 / 𝑥]𝜒 ↔ 𝐴 ∈ {𝑥 ∣ 𝜒}) |
13 | | dfclel 2818 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∣ 𝜒} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜒})) |
14 | | df-clab 2716 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) |
15 | 14 | anbi2i 622 |
. . . . 5
⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜒}) ↔ (𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒)) |
16 | 15 | exbii 1851 |
. . . 4
⊢
(∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜒}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒)) |
17 | 12, 13, 16 | 3bitrri 297 |
. . 3
⊢
(∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒) ↔ [𝐴 / 𝑥]𝜒) |
18 | 17 | biimpi 215 |
. 2
⊢
(∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜒) → [𝐴 / 𝑥]𝜒) |
19 | 7, 11, 18 | syl56 36 |
1
⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) |