MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2abdvALT Structured version   Visualization version   GIF version

Theorem ss2abdvALT 4056
Description: Alternate proof of ss2abdv 4055. Shorter, but requiring ax-8 2100. (Contributed by Steven Nguyen, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ss2abdvALT.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ss2abdvALT (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem ss2abdvALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ss2abdvALT.1 . . . 4 (𝜑 → (𝜓𝜒))
21sbimdv 2073 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))
3 df-clab 2704 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
4 df-clab 2704 . . 3 (𝑦 ∈ {𝑥𝜒} ↔ [𝑦 / 𝑥]𝜒)
52, 3, 43imtr4g 296 . 2 (𝜑 → (𝑦 ∈ {𝑥𝜓} → 𝑦 ∈ {𝑥𝜒}))
65ssrdv 3983 1 (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2059  wcel 2098  {cab 2703  wss 3943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-in 3950  df-ss 3960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator