MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2abdvALT Structured version   Visualization version   GIF version

Theorem ss2abdvALT 3994
Description: Alternate proof of ss2abdv 3993. Shorter, but requiring ax-8 2110. (Contributed by Steven Nguyen, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ss2abdvALT.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ss2abdvALT (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem ss2abdvALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ss2abdvALT.1 . . . 4 (𝜑 → (𝜓𝜒))
21sbimdv 2082 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))
3 df-clab 2716 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
4 df-clab 2716 . . 3 (𝑦 ∈ {𝑥𝜒} ↔ [𝑦 / 𝑥]𝜒)
52, 3, 43imtr4g 295 . 2 (𝜑 → (𝑦 ∈ {𝑥𝜓} → 𝑦 ∈ {𝑥𝜒}))
65ssrdv 3923 1 (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2068  wcel 2108  {cab 2715  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator