![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abdvALT | Structured version Visualization version GIF version |
Description: Alternate proof of ss2abdv 4060. Shorter, but requiring ax-8 2108. (Contributed by Steven Nguyen, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ss2abdvALT.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2abdvALT | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2abdvALT.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | sbimdv 2081 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
3 | df-clab 2710 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
4 | df-clab 2710 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
5 | 2, 3, 4 | 3imtr4g 295 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
6 | 5 | ssrdv 3988 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2067 ∈ wcel 2106 {cab 2709 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |