MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2abdv Structured version   Visualization version   GIF version

Theorem ss2abdv 4032
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.)
Hypothesis
Ref Expression
ss2abdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ss2abdv (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem ss2abdv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ss2abdv.1 . . . 4 (𝜑 → (𝜓𝜒))
21sbimdv 2079 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))
3 df-clab 2709 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
4 df-clab 2709 . . 3 (𝑦 ∈ {𝑥𝜒} ↔ [𝑦 / 𝑥]𝜒)
52, 3, 43imtr4g 296 . 2 (𝜑 → (𝑦 ∈ {𝑥𝜓} → 𝑦 ∈ {𝑥𝜒}))
65ssrdv 3955 1 (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2065  wcel 2109  {cab 2708  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-sb 2066  df-clab 2709  df-ss 3934
This theorem is referenced by:  ss2abi  4033  abssdv  4034  intss  4936  ssopab2  5509  ssoprab2  7460  suppimacnvss  8155  suppimacnv  8156  ressuppss  8165  ss2ixp  8886  fiss  9382  tcss  9704  tcel  9705  infmap2  10177  cfub  10209  cflm  10210  cflecard  10213  clsslem  14957  cncmet  25229  plyss  26111  iunrnmptss  32501  ofrn2  32571  sigaclci  34129  subfacp1lem6  35179  ss2mcls  35562  itg2addnclem  37672  sdclem1  37744  istotbnd3  37772  sstotbnd  37776  qsss1  38284  disjdmqscossss  38802  sticksstones4  42144  sticksstones14  42155  sticksstones20  42161  sticksstones22  42163  ssabdv  42215  aomclem4  43053  hbtlem4  43122  hbtlem3  43123  rngunsnply  43165  iocinico  43208
  Copyright terms: Public domain W3C validator