MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2abdv Structured version   Visualization version   GIF version

Theorem ss2abdv 4001
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) Avoid ax-8 2111, ax-10 2140, ax-11 2157, ax-12 2174. (Revised by Gino Giotto, 28-Jun-2024.)
Hypothesis
Ref Expression
ss2abdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ss2abdv (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem ss2abdv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-in 3898 . . 3 ({𝑥𝜓} ∩ {𝑥𝜒}) = {𝑦 ∣ (𝑦 ∈ {𝑥𝜓} ∧ 𝑦 ∈ {𝑥𝜒})}
2 df-clab 2717 . . . . . . 7 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
32bicomi 223 . . . . . 6 ([𝑦 / 𝑥]𝜓𝑦 ∈ {𝑥𝜓})
4 df-clab 2717 . . . . . . 7 (𝑦 ∈ {𝑥𝜒} ↔ [𝑦 / 𝑥]𝜒)
54bicomi 223 . . . . . 6 ([𝑦 / 𝑥]𝜒𝑦 ∈ {𝑥𝜒})
63, 5anbi12i 626 . . . . 5 (([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (𝑦 ∈ {𝑥𝜓} ∧ 𝑦 ∈ {𝑥𝜒}))
76abbii 2809 . . . 4 {𝑦 ∣ ([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)} = {𝑦 ∣ (𝑦 ∈ {𝑥𝜓} ∧ 𝑦 ∈ {𝑥𝜒})}
8 sbequ 2089 . . . . . . . . 9 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜓 ↔ [𝑧 / 𝑥]𝜓))
9 sbequ 2089 . . . . . . . . 9 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜒 ↔ [𝑧 / 𝑥]𝜒))
108, 9anbi12d 630 . . . . . . . 8 (𝑦 = 𝑧 → (([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒)))
1110sbievw 2098 . . . . . . 7 ([𝑧 / 𝑦]([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒))
12 ax-1 6 . . . . . . . . . 10 ([𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜒 → [𝑧 / 𝑥]𝜓))
1312a1i 11 . . . . . . . . 9 (𝜑 → ([𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜒 → [𝑧 / 𝑥]𝜓)))
1413impd 410 . . . . . . . 8 (𝜑 → (([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒) → [𝑧 / 𝑥]𝜓))
15 ss2abdv.1 . . . . . . . . . 10 (𝜑 → (𝜓𝜒))
1615sbimdv 2084 . . . . . . . . 9 (𝜑 → ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜒))
1716ancld 550 . . . . . . . 8 (𝜑 → ([𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒)))
1814, 17impbid 211 . . . . . . 7 (𝜑 → (([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒) ↔ [𝑧 / 𝑥]𝜓))
1911, 18syl5bb 282 . . . . . 6 (𝜑 → ([𝑧 / 𝑦]([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ [𝑧 / 𝑥]𝜓))
20 df-clab 2717 . . . . . 6 (𝑧 ∈ {𝑦 ∣ ([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)} ↔ [𝑧 / 𝑦]([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
21 df-clab 2717 . . . . . 6 (𝑧 ∈ {𝑥𝜓} ↔ [𝑧 / 𝑥]𝜓)
2219, 20, 213bitr4g 313 . . . . 5 (𝜑 → (𝑧 ∈ {𝑦 ∣ ([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)} ↔ 𝑧 ∈ {𝑥𝜓}))
2322eqrdv 2737 . . . 4 (𝜑 → {𝑦 ∣ ([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)} = {𝑥𝜓})
247, 23eqtr3id 2793 . . 3 (𝜑 → {𝑦 ∣ (𝑦 ∈ {𝑥𝜓} ∧ 𝑦 ∈ {𝑥𝜒})} = {𝑥𝜓})
251, 24eqtrid 2791 . 2 (𝜑 → ({𝑥𝜓} ∩ {𝑥𝜒}) = {𝑥𝜓})
26 df-ss 3908 . 2 ({𝑥𝜓} ⊆ {𝑥𝜒} ↔ ({𝑥𝜓} ∩ {𝑥𝜒}) = {𝑥𝜓})
2725, 26sylibr 233 1 (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  [wsb 2070  wcel 2109  {cab 2716  cin 3890  wss 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-in 3898  df-ss 3908
This theorem is referenced by:  ss2abi  4004  intss  4905  ssopab2  5460  ssoprab2  7334  suppimacnvss  7973  suppimacnv  7974  ressuppss  7983  ss2ixp  8672  fiss  9144  tcss  9485  tcel  9486  infmap2  9958  cfub  9989  cflm  9990  cflecard  9993  clsslem  14676  cncmet  24467  plyss  25341  iunrnmptss  30884  ofrn2  30956  sigaclci  32079  subfacp1lem6  33126  ss2mcls  33509  itg2addnclem  35807  sdclem1  35880  istotbnd3  35908  sstotbnd  35912  qsss1  36402  sticksstones4  40085  sticksstones14  40096  sticksstones20  40102  sticksstones22  40104  aomclem4  40862  hbtlem4  40931  hbtlem3  40932  rngunsnply  40978  iocinico  41023
  Copyright terms: Public domain W3C validator