| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | sbimdv 2083 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| 3 | df-clab 2712 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | df-clab 2712 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
| 6 | 5 | ssrdv 3936 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2067 ∈ wcel 2113 {cab 2711 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-ss 3915 |
| This theorem is referenced by: ss2abi 4015 abssdv 4016 rabss2 4026 intss 4921 ssopab2 5491 ssoprab2 7422 suppimacnvss 8111 suppimacnv 8112 ressuppss 8121 ss2ixp 8842 fiss 9317 tcss 9641 tcel 9642 infmap2 10117 cfub 10149 cflm 10150 cflecard 10153 clsslem 14895 cncmet 25252 plyss 26134 iunrnmptss 32549 ofrn2 32626 sigaclci 34168 subfacp1lem6 35252 ss2mcls 35635 itg2addnclem 37734 sdclem1 37806 istotbnd3 37834 sstotbnd 37838 qsss1 38350 disjdmqscossss 38924 sticksstones4 42265 sticksstones14 42276 sticksstones20 42282 sticksstones22 42284 ssabdv 42341 aomclem4 43177 hbtlem4 43246 hbtlem3 43247 rngunsnply 43289 iocinico 43332 |
| Copyright terms: Public domain | W3C validator |