![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) |
Ref | Expression |
---|---|
ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2abdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alrimiv 1905 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
3 | ss2ab 3960 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒} ↔ ∀𝑥(𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 235 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1520 {cab 2775 ⊆ wss 3859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-in 3866 df-ss 3874 |
This theorem is referenced by: intss 4803 ssopab2 5323 ssoprab2 7081 suppimacnvss 7691 suppimacnv 7692 ressuppss 7700 ss2ixp 8323 fiss 8734 tcss 9032 tcel 9033 infmap2 9486 cfub 9517 cflm 9518 cflecard 9521 clsslem 14178 cncmet 23608 plyss 24472 iunrnmptss 30007 ofrn2 30077 sigaclci 31008 subfacp1lem6 32040 ss2mcls 32423 itg2addnclem 34474 sdclem1 34550 istotbnd3 34581 sstotbnd 34585 qsss1 35077 aomclem4 39142 hbtlem4 39211 hbtlem3 39212 rngunsnply 39258 iocinico 39303 |
Copyright terms: Public domain | W3C validator |