MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2abdv Structured version   Visualization version   GIF version

Theorem ss2abdv 4089
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.)
Hypothesis
Ref Expression
ss2abdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ss2abdv (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem ss2abdv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ss2abdv.1 . . . 4 (𝜑 → (𝜓𝜒))
21sbimdv 2078 . . 3 (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒))
3 df-clab 2718 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
4 df-clab 2718 . . 3 (𝑦 ∈ {𝑥𝜒} ↔ [𝑦 / 𝑥]𝜒)
52, 3, 43imtr4g 296 . 2 (𝜑 → (𝑦 ∈ {𝑥𝜓} → 𝑦 ∈ {𝑥𝜒}))
65ssrdv 4014 1 (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2064  wcel 2108  {cab 2717  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-sb 2065  df-clab 2718  df-ss 3993
This theorem is referenced by:  ss2abi  4090  abssdv  4091  intss  4993  ssopab2  5565  ssoprab2  7518  suppimacnvss  8214  suppimacnv  8215  ressuppss  8224  ss2ixp  8968  fiss  9493  tcss  9813  tcel  9814  infmap2  10286  cfub  10318  cflm  10319  cflecard  10322  clsslem  15033  cncmet  25375  plyss  26258  iunrnmptss  32588  ofrn2  32659  sigaclci  34096  subfacp1lem6  35153  ss2mcls  35536  itg2addnclem  37631  sdclem1  37703  istotbnd3  37731  sstotbnd  37735  qsss1  38245  disjdmqscossss  38759  sticksstones4  42106  sticksstones14  42117  sticksstones20  42123  sticksstones22  42125  ssabdv  42213  aomclem4  43014  hbtlem4  43083  hbtlem3  43084  rngunsnply  43130  iocinico  43173
  Copyright terms: Public domain W3C validator