| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | sbimdv 2078 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| 3 | df-clab 2715 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | df-clab 2715 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
| 6 | 5 | ssrdv 3989 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2064 ∈ wcel 2108 {cab 2714 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-sb 2065 df-clab 2715 df-ss 3968 |
| This theorem is referenced by: ss2abi 4067 abssdv 4068 intss 4969 ssopab2 5551 ssoprab2 7501 suppimacnvss 8198 suppimacnv 8199 ressuppss 8208 ss2ixp 8950 fiss 9464 tcss 9784 tcel 9785 infmap2 10257 cfub 10289 cflm 10290 cflecard 10293 clsslem 15023 cncmet 25356 plyss 26238 iunrnmptss 32578 ofrn2 32650 sigaclci 34133 subfacp1lem6 35190 ss2mcls 35573 itg2addnclem 37678 sdclem1 37750 istotbnd3 37778 sstotbnd 37782 qsss1 38290 disjdmqscossss 38804 sticksstones4 42150 sticksstones14 42161 sticksstones20 42167 sticksstones22 42169 ssabdv 42259 aomclem4 43069 hbtlem4 43138 hbtlem3 43139 rngunsnply 43181 iocinico 43224 |
| Copyright terms: Public domain | W3C validator |