| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | sbimdv 2079 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| 3 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
| 6 | 5 | ssrdv 3943 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 ∈ wcel 2109 {cab 2707 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 df-clab 2708 df-ss 3922 |
| This theorem is referenced by: ss2abi 4021 abssdv 4022 intss 4922 ssopab2 5493 ssoprab2 7421 suppimacnvss 8113 suppimacnv 8114 ressuppss 8123 ss2ixp 8844 fiss 9333 tcss 9659 tcel 9660 infmap2 10130 cfub 10162 cflm 10163 cflecard 10166 clsslem 14909 cncmet 25238 plyss 26120 iunrnmptss 32527 ofrn2 32597 sigaclci 34101 subfacp1lem6 35160 ss2mcls 35543 itg2addnclem 37653 sdclem1 37725 istotbnd3 37753 sstotbnd 37757 qsss1 38265 disjdmqscossss 38783 sticksstones4 42125 sticksstones14 42136 sticksstones20 42142 sticksstones22 42144 ssabdv 42196 aomclem4 43033 hbtlem4 43102 hbtlem3 43103 rngunsnply 43145 iocinico 43188 |
| Copyright terms: Public domain | W3C validator |