| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | sbimdv 2079 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| 3 | df-clab 2709 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | df-clab 2709 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
| 6 | 5 | ssrdv 3955 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 ∈ wcel 2109 {cab 2708 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 df-clab 2709 df-ss 3934 |
| This theorem is referenced by: ss2abi 4033 abssdv 4034 intss 4936 ssopab2 5509 ssoprab2 7460 suppimacnvss 8155 suppimacnv 8156 ressuppss 8165 ss2ixp 8886 fiss 9382 tcss 9704 tcel 9705 infmap2 10177 cfub 10209 cflm 10210 cflecard 10213 clsslem 14957 cncmet 25229 plyss 26111 iunrnmptss 32501 ofrn2 32571 sigaclci 34129 subfacp1lem6 35179 ss2mcls 35562 itg2addnclem 37672 sdclem1 37744 istotbnd3 37772 sstotbnd 37776 qsss1 38284 disjdmqscossss 38802 sticksstones4 42144 sticksstones14 42155 sticksstones20 42161 sticksstones22 42163 ssabdv 42215 aomclem4 43053 hbtlem4 43122 hbtlem3 43123 rngunsnply 43165 iocinico 43208 |
| Copyright terms: Public domain | W3C validator |