![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.) |
Ref | Expression |
---|---|
ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2abdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | sbimdv 2078 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
3 | df-clab 2718 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
4 | df-clab 2718 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
6 | 5 | ssrdv 4014 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2064 ∈ wcel 2108 {cab 2717 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-sb 2065 df-clab 2718 df-ss 3993 |
This theorem is referenced by: ss2abi 4090 abssdv 4091 intss 4993 ssopab2 5565 ssoprab2 7518 suppimacnvss 8214 suppimacnv 8215 ressuppss 8224 ss2ixp 8968 fiss 9493 tcss 9813 tcel 9814 infmap2 10286 cfub 10318 cflm 10319 cflecard 10322 clsslem 15033 cncmet 25375 plyss 26258 iunrnmptss 32588 ofrn2 32659 sigaclci 34096 subfacp1lem6 35153 ss2mcls 35536 itg2addnclem 37631 sdclem1 37703 istotbnd3 37731 sstotbnd 37735 qsss1 38245 disjdmqscossss 38759 sticksstones4 42106 sticksstones14 42117 sticksstones20 42123 sticksstones22 42125 ssabdv 42213 aomclem4 43014 hbtlem4 43083 hbtlem3 43084 rngunsnply 43130 iocinico 43173 |
Copyright terms: Public domain | W3C validator |