| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | sbimdv 2079 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| 3 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
| 6 | 5 | ssrdv 3952 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 ∈ wcel 2109 {cab 2707 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 df-clab 2708 df-ss 3931 |
| This theorem is referenced by: ss2abi 4030 abssdv 4031 intss 4933 ssopab2 5506 ssoprab2 7457 suppimacnvss 8152 suppimacnv 8153 ressuppss 8162 ss2ixp 8883 fiss 9375 tcss 9697 tcel 9698 infmap2 10170 cfub 10202 cflm 10203 cflecard 10206 clsslem 14950 cncmet 25222 plyss 26104 iunrnmptss 32494 ofrn2 32564 sigaclci 34122 subfacp1lem6 35172 ss2mcls 35555 itg2addnclem 37665 sdclem1 37737 istotbnd3 37765 sstotbnd 37769 qsss1 38277 disjdmqscossss 38795 sticksstones4 42137 sticksstones14 42148 sticksstones20 42154 sticksstones22 42156 ssabdv 42208 aomclem4 43046 hbtlem4 43115 hbtlem3 43116 rngunsnply 43158 iocinico 43201 |
| Copyright terms: Public domain | W3C validator |