| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | sbimdv 2081 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| 3 | df-clab 2710 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | df-clab 2710 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
| 6 | 5 | ssrdv 3940 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2067 ∈ wcel 2111 {cab 2709 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-sb 2068 df-clab 2710 df-ss 3919 |
| This theorem is referenced by: ss2abi 4018 abssdv 4019 intss 4919 ssopab2 5486 ssoprab2 7414 suppimacnvss 8103 suppimacnv 8104 ressuppss 8113 ss2ixp 8834 fiss 9308 tcss 9632 tcel 9633 infmap2 10108 cfub 10140 cflm 10141 cflecard 10144 clsslem 14891 cncmet 25250 plyss 26132 iunrnmptss 32543 ofrn2 32620 sigaclci 34143 subfacp1lem6 35227 ss2mcls 35610 itg2addnclem 37717 sdclem1 37789 istotbnd3 37817 sstotbnd 37821 qsss1 38329 disjdmqscossss 38847 sticksstones4 42188 sticksstones14 42199 sticksstones20 42205 sticksstones22 42207 ssabdv 42259 aomclem4 43096 hbtlem4 43165 hbtlem3 43166 rngunsnply 43208 iocinico 43251 |
| Copyright terms: Public domain | W3C validator |