MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2abdv Structured version   Visualization version   GIF version

Theorem ss2abdv 4002
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) Avoid ax-8 2106, ax-10 2135, ax-11 2152, ax-12 2169. (Revised by Gino Giotto, 28-Jun-2024.)
Hypothesis
Ref Expression
ss2abdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ss2abdv (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem ss2abdv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-in 3899 . . 3 ({𝑥𝜓} ∩ {𝑥𝜒}) = {𝑦 ∣ (𝑦 ∈ {𝑥𝜓} ∧ 𝑦 ∈ {𝑥𝜒})}
2 df-clab 2714 . . . . . . 7 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
32bicomi 223 . . . . . 6 ([𝑦 / 𝑥]𝜓𝑦 ∈ {𝑥𝜓})
4 df-clab 2714 . . . . . . 7 (𝑦 ∈ {𝑥𝜒} ↔ [𝑦 / 𝑥]𝜒)
54bicomi 223 . . . . . 6 ([𝑦 / 𝑥]𝜒𝑦 ∈ {𝑥𝜒})
63, 5anbi12i 628 . . . . 5 (([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (𝑦 ∈ {𝑥𝜓} ∧ 𝑦 ∈ {𝑥𝜒}))
76abbii 2806 . . . 4 {𝑦 ∣ ([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)} = {𝑦 ∣ (𝑦 ∈ {𝑥𝜓} ∧ 𝑦 ∈ {𝑥𝜒})}
8 sbequ 2084 . . . . . . . . 9 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜓 ↔ [𝑧 / 𝑥]𝜓))
9 sbequ 2084 . . . . . . . . 9 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜒 ↔ [𝑧 / 𝑥]𝜒))
108, 9anbi12d 632 . . . . . . . 8 (𝑦 = 𝑧 → (([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒)))
1110sbievw 2093 . . . . . . 7 ([𝑧 / 𝑦]([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒))
12 ax-1 6 . . . . . . . . . 10 ([𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜒 → [𝑧 / 𝑥]𝜓))
1312a1i 11 . . . . . . . . 9 (𝜑 → ([𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜒 → [𝑧 / 𝑥]𝜓)))
1413impd 412 . . . . . . . 8 (𝜑 → (([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒) → [𝑧 / 𝑥]𝜓))
15 ss2abdv.1 . . . . . . . . . 10 (𝜑 → (𝜓𝜒))
1615sbimdv 2079 . . . . . . . . 9 (𝜑 → ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜒))
1716ancld 552 . . . . . . . 8 (𝜑 → ([𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒)))
1814, 17impbid 211 . . . . . . 7 (𝜑 → (([𝑧 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜒) ↔ [𝑧 / 𝑥]𝜓))
1911, 18bitrid 283 . . . . . 6 (𝜑 → ([𝑧 / 𝑦]([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ [𝑧 / 𝑥]𝜓))
20 df-clab 2714 . . . . . 6 (𝑧 ∈ {𝑦 ∣ ([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)} ↔ [𝑧 / 𝑦]([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
21 df-clab 2714 . . . . . 6 (𝑧 ∈ {𝑥𝜓} ↔ [𝑧 / 𝑥]𝜓)
2219, 20, 213bitr4g 314 . . . . 5 (𝜑 → (𝑧 ∈ {𝑦 ∣ ([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)} ↔ 𝑧 ∈ {𝑥𝜓}))
2322eqrdv 2734 . . . 4 (𝜑 → {𝑦 ∣ ([𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)} = {𝑥𝜓})
247, 23eqtr3id 2790 . . 3 (𝜑 → {𝑦 ∣ (𝑦 ∈ {𝑥𝜓} ∧ 𝑦 ∈ {𝑥𝜒})} = {𝑥𝜓})
251, 24eqtrid 2788 . 2 (𝜑 → ({𝑥𝜓} ∩ {𝑥𝜒}) = {𝑥𝜓})
26 df-ss 3909 . 2 ({𝑥𝜓} ⊆ {𝑥𝜒} ↔ ({𝑥𝜓} ∩ {𝑥𝜒}) = {𝑥𝜓})
2725, 26sylibr 233 1 (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  [wsb 2065  wcel 2104  {cab 2713  cin 3891  wss 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-in 3899  df-ss 3909
This theorem is referenced by:  ss2abi  4005  abssdv  4007  intss  4907  ssopab2  5472  ssoprab2  7375  suppimacnvss  8020  suppimacnv  8021  ressuppss  8030  ss2ixp  8729  fiss  9231  tcss  9550  tcel  9551  infmap2  10024  cfub  10055  cflm  10056  cflecard  10059  clsslem  14744  cncmet  24535  plyss  25409  iunrnmptss  30954  ofrn2  31026  sigaclci  32149  subfacp1lem6  33196  ss2mcls  33579  itg2addnclem  35876  sdclem1  35949  istotbnd3  35977  sstotbnd  35981  qsss1  36499  disjdmqscossss  37017  sticksstones4  40305  sticksstones14  40316  sticksstones20  40322  sticksstones22  40324  ssabdv  40389  aomclem4  41078  hbtlem4  41147  hbtlem3  41148  rngunsnply  41194  iocinico  41239
  Copyright terms: Public domain W3C validator