| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) (Revised by Steven Nguyen, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | sbimdv 2078 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜒)) |
| 3 | df-clab 2714 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | df-clab 2714 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜒} ↔ [𝑦 / 𝑥]𝜒) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑦 ∈ {𝑥 ∣ 𝜓} → 𝑦 ∈ {𝑥 ∣ 𝜒})) |
| 6 | 5 | ssrdv 3964 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2064 ∈ wcel 2108 {cab 2713 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-sb 2065 df-clab 2714 df-ss 3943 |
| This theorem is referenced by: ss2abi 4042 abssdv 4043 intss 4945 ssopab2 5521 ssoprab2 7475 suppimacnvss 8172 suppimacnv 8173 ressuppss 8182 ss2ixp 8924 fiss 9436 tcss 9758 tcel 9759 infmap2 10231 cfub 10263 cflm 10264 cflecard 10267 clsslem 15003 cncmet 25274 plyss 26156 iunrnmptss 32546 ofrn2 32618 sigaclci 34163 subfacp1lem6 35207 ss2mcls 35590 itg2addnclem 37695 sdclem1 37767 istotbnd3 37795 sstotbnd 37799 qsss1 38307 disjdmqscossss 38821 sticksstones4 42162 sticksstones14 42173 sticksstones20 42179 sticksstones22 42181 ssabdv 42271 aomclem4 43081 hbtlem4 43150 hbtlem3 43151 rngunsnply 43193 iocinico 43236 |
| Copyright terms: Public domain | W3C validator |