MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sblbisvOLD Structured version   Visualization version   GIF version

Theorem sblbisvOLD 2329
Description: Obsolete version of sblbis 2319 as of 24-Jul-2023. Introduce left biconditional inside of a substitution. Version of sblbis 2319 with a disjoint variable condition, not requiring ax-13 2390. (Contributed by Wolf Lammen, 18-Jan-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
sblbisvOLD.1 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sblbisvOLD ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem sblbisvOLD
StepHypRef Expression
1 sbbivOLD 2327 . 2 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑))
2 sblbisvOLD.1 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
32bibi2i 340 . 2 (([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
41, 3bitri 277 1 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 208  [wsb 2069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-12 2177
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1781  df-nf 1785  df-sb 2070
This theorem is referenced by:  sbievOLD  2331
  Copyright terms: Public domain W3C validator