![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2510 with a disjoint variable condition, not requiring ax-13 2380. See sbievw 2093 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2141 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.) |
Ref | Expression |
---|---|
sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | sbbiiev 2092 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
3 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | sbf 2272 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
5 | 2, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1781 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: sbiedw 2320 sbco2v 2336 mo4f 2570 cbvreuwOLD 3423 cbvrabwOLD 3482 reu2 3747 rmo4f 3757 sbcralt 3894 sbcreu 3898 sbcel12 4434 sbceqg 4435 sbcbr123 5220 cbvmptf 5275 frpoins2fg 6376 wfis2fgOLD 6389 tfis2f 7893 tfinds 7897 frins2f 9822 clwwlknonclwlknonf1o 30394 dlwwlknondlwlknonf1o 30397 funcnv4mpt 32687 nn0min 32824 ballotlemodife 34462 bnj1321 35003 setinds2f 35743 bj-sbeqALT 36866 scottabf 44209 |
Copyright terms: Public domain | W3C validator |