MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiev Structured version   Visualization version   GIF version

Theorem sbiev 2285
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2483 with a disjoint variable condition, not requiring ax-13 2333. (Contributed by Wolf Lammen, 18-Jan-2023.)
Hypotheses
Ref Expression
sbiev.1 𝑥𝜓
sbiev.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbiev ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbiev
StepHypRef Expression
1 equsb1v 2246 . . 3 [𝑦 / 𝑥]𝑥 = 𝑦
2 sbiev.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32sbimi 2017 . . 3 ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑𝜓))
41, 3ax-mp 5 . 2 [𝑦 / 𝑥](𝜑𝜓)
5 sbiev.1 . . . 4 𝑥𝜓
65sbfv 2245 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
76sblbisv 2284 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
84, 7mpbi 222 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wnf 1827  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-10 2134  ax-12 2162
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-sb 2012
This theorem is referenced by:  sbco2vv  2289  equsb3v  2290  sbco2v  2306  elsb3v  2511  elsb4v  2514  mo4f  2582  eqsb3v  2884  clelsb3v  2888  cbvabv  2913  2reu8i  42136
  Copyright terms: Public domain W3C validator