![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2505 with a disjoint variable condition, not requiring ax-13 2375. See sbievw 2091 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2139 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.) |
Ref | Expression |
---|---|
sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | sbbiiev 2090 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
3 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | sbf 2269 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
5 | 2, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1780 [wsb 2062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-sb 2063 |
This theorem is referenced by: sbiedw 2315 sbco2v 2331 mo4f 2565 cbvreuwOLD 3413 cbvrabwOLD 3472 reu2 3734 rmo4f 3744 sbcralt 3881 sbcreu 3885 sbcel12 4417 sbceqg 4418 sbcbr123 5202 cbvmptf 5257 frpoins2fg 6367 wfis2fgOLD 6380 tfis2f 7877 tfinds 7881 frins2f 9791 clwwlknonclwlknonf1o 30391 dlwwlknondlwlknonf1o 30394 funcnv4mpt 32686 nn0min 32827 ballotlemodife 34479 bnj1321 35020 setinds2f 35761 bj-sbeqALT 36883 scottabf 44236 |
Copyright terms: Public domain | W3C validator |