![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2501 with a disjoint variable condition, not requiring ax-13 2371. See sbievw 2095 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2137 and shorten proof. (Revised by BJ, 18-Jul-2023.) |
Ref | Expression |
---|---|
sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2088 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | equsalv 2258 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
5 | 1, 4 | bitri 274 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 Ⅎwnf 1785 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-nf 1786 df-sb 2068 |
This theorem is referenced by: sbiedw 2309 sbco2v 2326 mo4f 2561 cbvmowOLD 2598 cbveuwOLD 2602 cbvabwOLD 2807 cbvralfwOLD 3320 cbvreuwOLD 3412 cbvrabw 3467 reu2 3720 rmo4f 3730 sbcralt 3865 sbcreu 3869 sbcel12 4407 sbceqg 4408 sbcbr123 5201 cbvmptf 5256 frpoins2fg 6342 wfis2fgOLD 6355 tfis2f 7841 tfinds 7845 frins2f 9744 clwwlknonclwlknonf1o 29604 dlwwlknondlwlknonf1o 29607 funcnv4mpt 31881 nn0min 32013 ballotlemodife 33484 bnj1321 34026 setinds2f 34739 bj-sbeqALT 35768 scottabf 42984 |
Copyright terms: Public domain | W3C validator |