| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2502 with a disjoint variable condition, not requiring ax-13 2372. See sbievw 2096 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2144 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
| sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbbiiev 2095 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| 3 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | sbf 2273 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: sbiedw 2317 sbco2v 2332 mo4f 2562 cbvrabwOLD 3431 reu2 3684 rmo4f 3694 sbcralt 3823 sbcreu 3827 sbcel12 4361 sbceqg 4362 sbcbr123 5145 cbvmptf 5191 frpoins2fg 6291 tfis2f 7786 tfinds 7790 setinds2f 9640 frins2f 9646 clwwlknonclwlknonf1o 30340 dlwwlknondlwlknonf1o 30343 funcnv4mpt 32649 nn0min 32801 ballotlemodife 34509 bnj1321 35037 bj-sbeqALT 36940 scottabf 44279 |
| Copyright terms: Public domain | W3C validator |