| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2501 with a disjoint variable condition, not requiring ax-13 2371. See sbievw 2094 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2142 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
| sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbbiiev 2093 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| 3 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | sbf 2271 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: sbiedw 2315 sbco2v 2330 mo4f 2561 cbvreuwOLD 3389 cbvrabwOLD 3445 reu2 3699 rmo4f 3709 sbcralt 3838 sbcreu 3842 sbcel12 4377 sbceqg 4378 sbcbr123 5164 cbvmptf 5210 frpoins2fg 6320 tfis2f 7835 tfinds 7839 frins2f 9713 clwwlknonclwlknonf1o 30298 dlwwlknondlwlknonf1o 30301 funcnv4mpt 32600 nn0min 32752 ballotlemodife 34496 bnj1321 35024 setinds2f 35774 bj-sbeqALT 36895 scottabf 44236 |
| Copyright terms: Public domain | W3C validator |