MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiev Structured version   Visualization version   GIF version

Theorem sbiev 2318
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2510 with a disjoint variable condition, not requiring ax-13 2380. See sbievw 2093 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2141 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.)
Hypotheses
Ref Expression
sbiev.1 𝑥𝜓
sbiev.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbiev ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbiev
StepHypRef Expression
1 sbiev.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21sbbiiev 2092 . 2 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)
3 sbiev.1 . . 3 𝑥𝜓
43sbf 2272 . 2 ([𝑦 / 𝑥]𝜓𝜓)
52, 4bitri 275 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by:  sbiedw  2320  sbco2v  2336  mo4f  2570  cbvreuwOLD  3423  cbvrabwOLD  3482  reu2  3747  rmo4f  3757  sbcralt  3894  sbcreu  3898  sbcel12  4434  sbceqg  4435  sbcbr123  5220  cbvmptf  5275  frpoins2fg  6376  wfis2fgOLD  6389  tfis2f  7893  tfinds  7897  frins2f  9822  clwwlknonclwlknonf1o  30394  dlwwlknondlwlknonf1o  30397  funcnv4mpt  32687  nn0min  32824  ballotlemodife  34462  bnj1321  35003  setinds2f  35743  bj-sbeqALT  36866  scottabf  44209
  Copyright terms: Public domain W3C validator