MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiev Structured version   Visualization version   GIF version

Theorem sbiev 2312
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2506 with a disjoint variable condition, not requiring ax-13 2372. See sbievw 2097 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2139 and shorten proof. (Revised by BJ, 18-Jul-2023.)
Hypotheses
Ref Expression
sbiev.1 𝑥𝜓
sbiev.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbiev ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbiev
StepHypRef Expression
1 sb6 2089 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sbiev.1 . . 3 𝑥𝜓
3 sbiev.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3equsalv 2262 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
51, 4bitri 274 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  sbiedw  2313  sbiedwOLD  2314  sbco2v  2331  mo4f  2567  cbvmowOLD  2604  cbveuwOLD  2608  cbvabwOLD  2814  cbvralfwOLD  3359  cbvreuw  3365  cbvrabw  3414  reu2  3655  rmo4f  3665  sbcralt  3801  sbcreu  3805  sbcel12  4339  sbceqg  4340  sbcbr123  5124  cbvmptf  5179  frpoins2fg  6232  wfis2fgOLD  6245  tfis2f  7677  tfinds  7681  frins2f  9442  clwwlknonclwlknonf1o  28627  dlwwlknondlwlknonf1o  28630  funcnv4mpt  30908  nn0min  31036  ballotlemodife  32364  bnj1321  32907  setinds2f  33661  bj-sbeqALT  35012  scottabf  41747
  Copyright terms: Public domain W3C validator