MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiev Structured version   Visualization version   GIF version

Theorem sbiev 2317
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2504 with a disjoint variable condition, not requiring ax-13 2374. See sbievw 2098 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2146 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.)
Hypotheses
Ref Expression
sbiev.1 𝑥𝜓
sbiev.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbiev ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbiev
StepHypRef Expression
1 sbiev.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21sbbiiev 2097 . 2 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)
3 sbiev.1 . . 3 𝑥𝜓
43sbf 2275 . 2 ([𝑦 / 𝑥]𝜓𝜓)
52, 4bitri 275 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1784  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2182
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-sb 2068
This theorem is referenced by:  sbiedw  2319  sbco2v  2334  mo4f  2564  cbvrabwOLD  3432  reu2  3680  rmo4f  3690  sbcralt  3819  sbcreu  3823  sbcel12  4360  sbceqg  4361  sbcbr123  5147  cbvmptf  5193  frpoins2fg  6296  tfis2f  7792  tfinds  7796  setinds2f  9647  frins2f  9653  clwwlknonclwlknonf1o  30344  dlwwlknondlwlknonf1o  30347  funcnv4mpt  32653  nn0min  32808  ballotlemodife  34532  bnj1321  35060  bj-sbeqALT  36965  scottabf  44358
  Copyright terms: Public domain W3C validator