![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2502 with a disjoint variable condition, not requiring ax-13 2372. See sbievw 2096 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2138 and shorten proof. (Revised by BJ, 18-Jul-2023.) |
Ref | Expression |
---|---|
sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2089 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | equsalv 2259 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
5 | 1, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 Ⅎwnf 1786 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-nf 1787 df-sb 2069 |
This theorem is referenced by: sbiedw 2310 sbco2v 2327 mo4f 2562 cbvmowOLD 2599 cbveuwOLD 2603 cbvabwOLD 2808 cbvralfwOLD 3321 cbvreuwOLD 3413 cbvrabw 3468 reu2 3722 rmo4f 3732 sbcralt 3867 sbcreu 3871 sbcel12 4409 sbceqg 4410 sbcbr123 5203 cbvmptf 5258 frpoins2fg 6346 wfis2fgOLD 6359 tfis2f 7845 tfinds 7849 frins2f 9748 clwwlknonclwlknonf1o 29615 dlwwlknondlwlknonf1o 29618 funcnv4mpt 31894 nn0min 32026 ballotlemodife 33496 bnj1321 34038 setinds2f 34751 bj-sbeqALT 35780 scottabf 42999 |
Copyright terms: Public domain | W3C validator |