MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiev Structured version   Visualization version   GIF version

Theorem sbiev 2313
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2505 with a disjoint variable condition, not requiring ax-13 2375. See sbievw 2091 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2139 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.)
Hypotheses
Ref Expression
sbiev.1 𝑥𝜓
sbiev.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbiev ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbiev
StepHypRef Expression
1 sbiev.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21sbbiiev 2090 . 2 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)
3 sbiev.1 . . 3 𝑥𝜓
43sbf 2269 . 2 ([𝑦 / 𝑥]𝜓𝜓)
52, 4bitri 275 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1780  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-sb 2063
This theorem is referenced by:  sbiedw  2315  sbco2v  2331  mo4f  2565  cbvreuwOLD  3413  cbvrabwOLD  3472  reu2  3734  rmo4f  3744  sbcralt  3881  sbcreu  3885  sbcel12  4417  sbceqg  4418  sbcbr123  5202  cbvmptf  5257  frpoins2fg  6367  wfis2fgOLD  6380  tfis2f  7877  tfinds  7881  frins2f  9791  clwwlknonclwlknonf1o  30391  dlwwlknondlwlknonf1o  30394  funcnv4mpt  32686  nn0min  32827  ballotlemodife  34479  bnj1321  35020  setinds2f  35761  bj-sbeqALT  36883  scottabf  44236
  Copyright terms: Public domain W3C validator