| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2506 with a disjoint variable condition, not requiring ax-13 2376. See sbievw 2093 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2141 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
| sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbbiiev 2092 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| 3 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | sbf 2271 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbiedw 2316 sbco2v 2331 mo4f 2566 cbvreuwOLD 3394 cbvrabwOLD 3453 reu2 3708 rmo4f 3718 sbcralt 3847 sbcreu 3851 sbcel12 4386 sbceqg 4387 sbcbr123 5173 cbvmptf 5221 frpoins2fg 6333 wfis2fgOLD 6346 tfis2f 7851 tfinds 7855 frins2f 9767 clwwlknonclwlknonf1o 30343 dlwwlknondlwlknonf1o 30346 funcnv4mpt 32647 nn0min 32799 ballotlemodife 34530 bnj1321 35058 setinds2f 35797 bj-sbeqALT 36918 scottabf 44264 |
| Copyright terms: Public domain | W3C validator |