Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2506 with a disjoint variable condition, not requiring ax-13 2372. See sbievw 2097 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2139 and shorten proof. (Revised by BJ, 18-Jul-2023.) |
Ref | Expression |
---|---|
sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2089 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | equsalv 2262 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
5 | 1, 4 | bitri 274 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: sbiedw 2313 sbiedwOLD 2314 sbco2v 2331 mo4f 2567 cbvmowOLD 2604 cbveuwOLD 2608 cbvabwOLD 2814 cbvralfwOLD 3359 cbvreuw 3365 cbvrabw 3414 reu2 3655 rmo4f 3665 sbcralt 3801 sbcreu 3805 sbcel12 4339 sbceqg 4340 sbcbr123 5124 cbvmptf 5179 frpoins2fg 6232 wfis2fgOLD 6245 tfis2f 7677 tfinds 7681 frins2f 9442 clwwlknonclwlknonf1o 28627 dlwwlknondlwlknonf1o 28630 funcnv4mpt 30908 nn0min 31036 ballotlemodife 32364 bnj1321 32907 setinds2f 33661 bj-sbeqALT 35012 scottabf 41747 |
Copyright terms: Public domain | W3C validator |