| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbiev | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2500 with a disjoint variable condition, not requiring ax-13 2370. See sbievw 2094 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2142 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| sbiev.1 | ⊢ Ⅎ𝑥𝜓 |
| sbiev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbiev | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbiev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbbiiev 2093 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| 3 | sbiev.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | sbf 2271 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: sbiedw 2315 sbco2v 2330 mo4f 2560 cbvrabwOLD 3442 reu2 3696 rmo4f 3706 sbcralt 3835 sbcreu 3839 sbcel12 4374 sbceqg 4375 sbcbr123 5161 cbvmptf 5207 frpoins2fg 6317 tfis2f 7832 tfinds 7836 frins2f 9706 clwwlknonclwlknonf1o 30291 dlwwlknondlwlknonf1o 30294 funcnv4mpt 32593 nn0min 32745 ballotlemodife 34489 bnj1321 35017 setinds2f 35767 bj-sbeqALT 36888 scottabf 44229 |
| Copyright terms: Public domain | W3C validator |