MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiev Structured version   Visualization version   GIF version

Theorem sbiev 2314
Description: Conversion of implicit substitution to explicit substitution. Version of sbie 2506 with a disjoint variable condition, not requiring ax-13 2376. See sbievw 2093 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 18-Jan-2023.) Remove dependence on ax-10 2141 and shorten proof. (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Jul-2025.)
Hypotheses
Ref Expression
sbiev.1 𝑥𝜓
sbiev.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbiev ([𝑦 / 𝑥]𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbiev
StepHypRef Expression
1 sbiev.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21sbbiiev 2092 . 2 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)
3 sbiev.1 . . 3 𝑥𝜓
43sbf 2271 . 2 ([𝑦 / 𝑥]𝜓𝜓)
52, 4bitri 275 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1783  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by:  sbiedw  2316  sbco2v  2331  mo4f  2566  cbvreuwOLD  3394  cbvrabwOLD  3453  reu2  3708  rmo4f  3718  sbcralt  3847  sbcreu  3851  sbcel12  4386  sbceqg  4387  sbcbr123  5173  cbvmptf  5221  frpoins2fg  6333  wfis2fgOLD  6346  tfis2f  7851  tfinds  7855  frins2f  9767  clwwlknonclwlknonf1o  30343  dlwwlknondlwlknonf1o  30346  funcnv4mpt  32647  nn0min  32799  ballotlemodife  34530  bnj1321  35058  setinds2f  35797  bj-sbeqALT  36918  scottabf  44264
  Copyright terms: Public domain W3C validator