![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sblbis | Structured version Visualization version GIF version |
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
sblbis.1 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sblbis | ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbi 2304 | . 2 ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑)) | |
2 | sblbis.1 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
3 | 2 | bibi2i 337 | . 2 ⊢ (([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
4 | 1, 3 | bitri 274 | 1 ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-nf 1786 df-sb 2068 |
This theorem is referenced by: sbie 2501 sb8eulem 2592 sbhypf 3538 sb8iota 6507 wl-sb8eut 36437 |
Copyright terms: Public domain | W3C validator |