MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sblbis Structured version   Visualization version   GIF version

Theorem sblbis 2309
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
Hypothesis
Ref Expression
sblbis.1 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sblbis ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))

Proof of Theorem sblbis
StepHypRef Expression
1 sbbi 2308 . 2 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑))
2 sblbis.1 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
32bibi2i 337 . 2 (([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
41, 3bitri 275 1 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by:  sbie  2507  sb8eulem  2598  sbhypf  3544  sb8iota  6525  wl-sb8eut  37579  wl-sb8eutv  37580
  Copyright terms: Public domain W3C validator