MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sblbis Structured version   Visualization version   GIF version

Theorem sblbis 2306
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
Hypothesis
Ref Expression
sblbis.1 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sblbis ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))

Proof of Theorem sblbis
StepHypRef Expression
1 sbbi 2305 . 2 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑))
2 sblbis.1 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
32bibi2i 338 . 2 (([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
41, 3bitri 274 1 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  sbie  2506  sb8eulem  2598  sb8iota  6403  wl-sb8eut  35732
  Copyright terms: Public domain W3C validator