Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbor2 Structured version   Visualization version   GIF version

Theorem sbor2 40177
Description: One direction of sbor 2304, using fewer axioms. Compare 19.33 1887. (Contributed by Steven Nguyen, 18-Aug-2023.)
Assertion
Ref Expression
sbor2 (([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑𝜓))

Proof of Theorem sbor2
StepHypRef Expression
1 orc 864 . . 3 (𝜑 → (𝜑𝜓))
21sbimi 2077 . 2 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥](𝜑𝜓))
3 olc 865 . . 3 (𝜓 → (𝜑𝜓))
43sbimi 2077 . 2 ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥](𝜑𝜓))
52, 4jaoi 854 1 (([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-or 845  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator