Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbor2 | Structured version Visualization version GIF version |
Description: One direction of sbor 2307, using fewer axioms. Compare 19.33 1888. (Contributed by Steven Nguyen, 18-Aug-2023.) |
Ref | Expression |
---|---|
sbor2 | ⊢ (([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
2 | 1 | sbimi 2078 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) |
3 | olc 864 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
4 | 3 | sbimi 2078 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) |
5 | 2, 4 | jaoi 853 | 1 ⊢ (([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-or 844 df-sb 2069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |