| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbor2 | Structured version Visualization version GIF version | ||
| Description: One direction of sbor 2306, using fewer axioms. Compare 19.33 1883. (Contributed by Steven Nguyen, 18-Aug-2023.) |
| Ref | Expression |
|---|---|
| sbor2 | ⊢ (([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | 1 | sbimi 2073 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) |
| 3 | olc 868 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 4 | 3 | sbimi 2073 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) |
| 5 | 2, 4 | jaoi 857 | 1 ⊢ (([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |