Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.9dev Structured version   Visualization version   GIF version

Theorem 19.9dev 42207
Description: 19.9d 2204 in the case of an existential quantifier, avoiding the ax-10 2141 from nfex 2328 that would be used for the hypothesis of 19.9d 2204, at the cost of an additional DV condition on 𝑦, 𝜑. (Contributed by SN, 26-May-2024.)
Hypothesis
Ref Expression
19.9dev.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
19.9dev (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑦𝜓))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem 19.9dev
StepHypRef Expression
1 excom 2163 . 2 (∃𝑥𝑦𝜓 ↔ ∃𝑦𝑥𝜓)
2 19.9dev.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 19.9t 2205 . . . 4 (Ⅎ𝑥𝜓 → (∃𝑥𝜓𝜓))
42, 3syl 17 . . 3 (𝜑 → (∃𝑥𝜓𝜓))
54exbidv 1920 . 2 (𝜑 → (∃𝑦𝑥𝜓 ↔ ∃𝑦𝜓))
61, 5bitrid 283 1 (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator