HomeHome Metamath Proof Explorer
Theorem List (p. 414 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28689)
  Hilbert Space Explorer  Hilbert Space Explorer
(28690-30212)
  Users' Mathboxes  Users' Mathboxes
(30213-44899)
 

Theorem List for Metamath Proof Explorer - 41301-41400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremiuneq2df 41301 Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremnnfoctb 41302* There exists a mapping from onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝐴)
 
Theoremssinss1d 41303 Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴𝐶)       (𝜑 → (𝐴𝐵) ⊆ 𝐶)
 
Theoremelpwinss 41304 An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐴 ∈ (𝒫 𝐵𝐶) → 𝐴𝐵)
 
Theoremunidmex 41305 If 𝐹 is a set, then dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐹𝑉)    &   𝑋 = dom 𝐹       (𝜑𝑋 ∈ V)
 
Theoremndisj2 41306* A non-disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑥 = 𝑦𝐵 = 𝐶)       Disj 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅))
 
Theoremzenom 41307 The set of integer numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
ℤ ≈ ω
 
Theoremuzwo4 41308* Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑗𝜓    &   (𝑗 = 𝑘 → (𝜑𝜓))       ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
 
Theoremunisn0 41309 The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
{∅} = ∅
 
Theoremssin0 41310 If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) = ∅)
 
Theoreminabs3 41311 Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐶𝐵 → ((𝐴𝐵) ∩ 𝐶) = (𝐴𝐶))
 
Theorempwpwuni 41312 Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵))
 
Theoremdisjiun2 41313* In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑Disj 𝑥𝐴 𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷 ∈ (𝐴𝐶))    &   (𝑥 = 𝐷𝐵 = 𝐸)       (𝜑 → ( 𝑥𝐶 𝐵𝐸) = ∅)
 
Theorem0pwfi 41314 The empty set is in any power set, and it's finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
∅ ∈ (𝒫 𝐴 ∩ Fin)
 
Theoremssinss2d 41315 Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐵𝐶)       (𝜑 → (𝐴𝐵) ⊆ 𝐶)
 
Theoremzct 41316 The set of integer numbers is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
ℤ ≼ ω
 
Theorempwfin0 41317 A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝒫 𝐴 ∩ Fin) ≠ ∅
 
Theoremuzct 41318 An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑍 = (ℤ𝑁)       𝑍 ≼ ω
 
Theoremiunxsnf 41319* A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑥𝐶    &   𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)        𝑥 ∈ {𝐴}𝐵 = 𝐶
 
Theoremfiiuncl 41320* If a set is closed under the union of two sets, then it is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝐷)    &   ((𝜑𝑦𝐷𝑧𝐷) → (𝑦𝑧) ∈ 𝐷)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)       (𝜑 𝑥𝐴 𝐵𝐷)
 
Theoremiunp1 41321* The addition of the next set to a union indexed by a finite set of sequential integers. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑘𝐵    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)       (𝜑 𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = ( 𝑘 ∈ (𝑀...𝑁)𝐴𝐵))
 
Theoremfiunicl 41322* If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝜑𝑥𝐴𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)       (𝜑 𝐴𝐴)
 
Theoremixpeq2d 41323 Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
 
Theoremdisjxp1 41324* The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑Disj 𝑥𝐴 𝐵)       (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
 
Theoremdisjsnxp 41325* The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Disj 𝑗𝐴 ({𝑗} × 𝐵)
 
Theoremeliind 41326* Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐴 𝑥𝐵 𝐶)    &   (𝜑𝐾𝐵)    &   (𝑥 = 𝐾 → (𝐴𝐶𝐴𝐷))       (𝜑𝐴𝐷)
 
Theoremrspcef 41327 Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝑥𝜓    &   𝑥𝐴    &   𝑥𝐵    &   (𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
 
Theoreminn0f 41328 A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝑥𝐴    &   𝑥𝐵       ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
 
Theoremixpssmapc 41329* An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝑥𝜑    &   (𝜑𝐶𝑉)    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶m 𝐴))
 
Theoreminn0 41330* A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
 
Theoremelintd 41331* Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐵) → 𝐴𝑥)       (𝜑𝐴 𝐵)
 
Theoremssdf 41332* A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝑥𝐵)       (𝜑𝐴𝐵)
 
Theorembrneqtrd 41333 Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑 → ¬ 𝐴𝑅𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑 → ¬ 𝐴𝑅𝐶)
 
Theoremssnct 41334 A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑 → ¬ 𝐴 ≼ ω)    &   (𝜑𝐴𝐵)       (𝜑 → ¬ 𝐵 ≼ ω)
 
Theoremssuniint 41335* Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐵) → 𝐴𝑥)       (𝜑𝐴 𝐵)
 
Theoremelintdv 41336* Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥𝐵) → 𝐴𝑥)       (𝜑𝐴 𝐵)
 
Theoremssd 41337* A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
((𝜑𝑥𝐴) → 𝑥𝐵)       (𝜑𝐴𝐵)
 
Theoremralimralim 41338 Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(∀𝑥𝐴 𝜑 → ∀𝑥𝐴 (𝜓𝜑))
 
Theoremsnelmap 41339 Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵m 𝐴))       (𝜑𝑥𝐵)
 
Theoremxrnmnfpnf 41340 An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑 → ¬ 𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ -∞)       (𝜑𝐴 = +∞)
 
Theoremnelrnmpt 41341* Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑥𝜑    &   𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐶𝑉)    &   ((𝜑𝑥𝐴) → 𝐶𝐵)       (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
 
Theoremsnn0d 41342 The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)       (𝜑 → {𝐴} ≠ ∅)
 
Theoremiuneq1i 41343* Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝐴 = 𝐵        𝑥𝐴 𝐶 = 𝑥𝐵 𝐶
 
Theoremnssrex 41344* Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
 
Theoremiunssf 41345 Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑥𝐶       ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
 
Theoremssinc 41346* Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))       (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
 
Theoremssdec 41347* Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))       (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
 
Theoremelixpconstg 41348* Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
 
Theoremiineq1d 41349* Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 
Theoremmetpsmet 41350 A metric is a pseudometric. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
 
Theoremixpssixp 41351 Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
 
Theoremballss3 41352* A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑥𝜑    &   (𝜑𝐷 ∈ (PsMet‘𝑋))    &   (𝜑𝑃𝑋)    &   (𝜑𝑅 ∈ ℝ*)    &   ((𝜑𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝐴)       (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴)
 
Theoremiunincfi 41353* Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))       (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
 
Theoremnsstr 41354 If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
((¬ 𝐴𝐵𝐶𝐵) → ¬ 𝐴𝐶)
 
Theoremrexanuz3 41355* Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑗𝜑    &   𝑍 = (ℤ𝑀)    &   (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)    &   (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)    &   (𝑘 = 𝑗 → (𝜒𝜃))    &   (𝑘 = 𝑗 → (𝜓𝜏))       (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
 
Theoremcbvmpo2 41356* Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑦𝐴    &   𝑤𝐴    &   𝑤𝐶    &   𝑦𝐸    &   (𝑦 = 𝑤𝐶 = 𝐸)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑤𝐵𝐸)
 
Theoremcbvmpo1 41357* Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐵    &   𝑧𝐵    &   𝑧𝐶    &   𝑥𝐸    &   (𝑥 = 𝑧𝐶 = 𝐸)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑦𝐵𝐸)
 
Theoremeliuniin 41358* Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴 = 𝑥𝐵 𝑦𝐶 𝐷       (𝑍𝑉 → (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
 
Theoremssabf 41359 Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐴       (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
 
Theorempssnssi 41360 A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴𝐵        ¬ 𝐵𝐴
 
Theoremrabidim2 41361 Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝑥 ∈ {𝑥𝐴𝜑} → 𝜑)
 
Theoremeluni2f 41362* Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐴    &   𝑥𝐵       (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
 
Theoremeliin2f 41363* Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐵       (𝐵 ≠ ∅ → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
 
Theoremnssd 41364 Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑋𝐴)    &   (𝜑 → ¬ 𝑋𝐵)       (𝜑 → ¬ 𝐴𝐵)
 
Theoremiineq12dv 41365* Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐵) → 𝐶 = 𝐷)       (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
 
Theoremsupxrcld 41366 The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ⊆ ℝ*)       (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
 
Theoremelrestd 41367 A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐽𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝑋𝐽)    &   𝐴 = (𝑋𝐵)       (𝜑𝐴 ∈ (𝐽t 𝐵))
 
Theoremeliuniincex 41368* Counterexample to show that the additional conditions in eliuniin 41358 and eliuniin2 41379 are actually needed. Notice that the definition of 𝐴 is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐵 = {∅}    &   𝐶 = ∅    &   𝐷 = ∅    &   𝑍 = V        ¬ (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷)
 
Theoremeliincex 41369* Counterexample to show that the additional conditions in eliin 4917 and eliin2 41375 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴 = V    &   𝐵 = ∅        ¬ (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶)
 
Theoremeliinid 41370* Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
 
Theoremabssf 41371 Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐴       ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
 
Theoremfexd 41372 If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐴𝐶)       (𝜑𝐹 ∈ V)
 
Theoremsupxrubd 41373 A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ⊆ ℝ*)    &   (𝜑𝐵𝐴)    &   𝑆 = sup(𝐴, ℝ*, < )       (𝜑𝐵𝑆)
 
Theoremssrabf 41374 Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐵    &   𝑥𝐴       (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
 
Theoremeliin2 41375* Membership in indexed intersection. See eliincex 41369 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 4917 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 41363). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝐵 ≠ ∅ → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
 
Theoremssrab2f 41376 Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐴       {𝑥𝐴𝜑} ⊆ 𝐴
 
Theoremrestuni3 41377 The underlying set of a subspace induced by the subspace operator t. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
 
Theoremrabssf 41378 Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐵       ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
 
Theoremeliuniin2 41379* Indexed union of indexed intersections. See eliincex 41369 for a counterexample showing that the precondition 𝐶 ≠ ∅ cannot be simply dropped. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐶    &   𝐴 = 𝑥𝐵 𝑦𝐶 𝐷       (𝐶 ≠ ∅ → (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
 
Theoremrestuni4 41380 The underlying set of a subspace induced by the t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵 𝐴)       (𝜑 (𝐴t 𝐵) = 𝐵)
 
Theoremrestuni6 41381 The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
 
Theoremrestuni5 41382 The underlying set of a subspace induced by the t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑋 = 𝐽       ((𝐽𝑉𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
 
Theoremunirestss 41383 The union of an elementwise intersection is a subset of the underlying set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 (𝐴t 𝐵) ⊆ 𝐴)
 
Theoreminiin1 41384* Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝐴 ≠ ∅ → ( 𝑥𝐴 𝐶𝐵) = 𝑥𝐴 (𝐶𝐵))
 
Theoreminiin2 41385* Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝐴 ≠ ∅ → (𝐵 𝑥𝐴 𝐶) = 𝑥𝐴 (𝐵𝐶))
 
Theoremcbvrabv2 41386* A more general version of cbvrabv 3492. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
 
Theoremiinssiin 41387 Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
 
Theoremeliind2 41388* Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐵) → 𝐴𝐶)       (𝜑𝐴 𝑥𝐵 𝐶)
 
Theoremiinssd 41389* Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑋𝐴)    &   (𝑥 = 𝑋𝐵 = 𝐷)    &   (𝜑𝐷𝐶)       (𝜑 𝑥𝐴 𝐵𝐶)
 
Theoremralrimia 41390 Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝜓)       (𝜑 → ∀𝑥𝐴 𝜓)
 
Theoremrabbida2 41391 Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremiinexd 41392* The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐴 ≠ ∅)    &   (𝜑 → ∀𝑥𝐴 𝐵𝐶)       (𝜑 𝑥𝐴 𝐵 ∈ V)
 
Theoremrabexf 41393 Separation Scheme in terms of a restricted class abstraction. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐴    &   𝐴𝑉       {𝑥𝐴𝜑} ∈ V
 
Theoremrabbida3 41394 Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremresexd 41395 The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐴𝑉)       (𝜑 → (𝐴𝐵) ∈ V)
 
Theoremr19.36vf 41396 Restricted quantifier version of one direction of 19.36 2227. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜓       (∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑𝜓))
 
Theoremraleqd 41397 Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐴    &   𝑥𝐵    &   (𝜑𝐴 = 𝐵)       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
 
Theoremralimda 41398 Deduction quantifying both antecedent and consequent. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
 
Theoremiinssf 41399 Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐶       (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
 
Theoremiinssdf 41400 Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐴    &   𝑥𝑋    &   𝑥𝐶    &   𝑥𝐷    &   (𝜑𝑋𝐴)    &   (𝑥 = 𝑋𝐵 = 𝐷)    &   (𝜑𝐷𝐶)       (𝜑 𝑥𝐴 𝐵𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44899
  Copyright terms: Public domain < Previous  Next >