HomeHome Metamath Proof Explorer
Theorem List (p. 414 of 470)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29567)
  Hilbert Space Explorer  Hilbert Space Explorer
(29568-31090)
  Users' Mathboxes  Users' Mathboxes
(31091-46927)
 

Theorem List for Metamath Proof Explorer - 41301-41400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaaitgo 41301 The standard algebraic numbers 𝔸 are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝔸 = (IntgOver‘ℚ)
 
Theoremitgoss 41302 An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇))
 
Theoremitgocn 41303 All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
(IntgOver‘𝑆) ⊆ ℂ
 
Theoremcnsrexpcl 41304 Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
(𝜑𝑆 ∈ (SubRing‘ℂfld))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌 ∈ ℕ0)       (𝜑 → (𝑋𝑌) ∈ 𝑆)
 
Theoremfsumcnsrcl 41305* Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
(𝜑𝑆 ∈ (SubRing‘ℂfld))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)       (𝜑 → Σ𝑘𝐴 𝐵𝑆)
 
Theoremcnsrplycl 41306 Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
(𝜑𝑆 ∈ (SubRing‘ℂfld))    &   (𝜑𝑃 ∈ (Poly‘𝐶))    &   (𝜑𝑋𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → (𝑃𝑋) ∈ 𝑆)
 
Theoremrgspnval 41307* Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.)
(𝜑𝑅 ∈ Ring)    &   (𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝐴𝐵)    &   (𝜑𝑁 = (RingSpan‘𝑅))    &   (𝜑𝑈 = (𝑁𝐴))       (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
 
Theoremrgspncl 41308 The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014.)
(𝜑𝑅 ∈ Ring)    &   (𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝐴𝐵)    &   (𝜑𝑁 = (RingSpan‘𝑅))    &   (𝜑𝑈 = (𝑁𝐴))       (𝜑𝑈 ∈ (SubRing‘𝑅))
 
Theoremrgspnssid 41309 The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014.)
(𝜑𝑅 ∈ Ring)    &   (𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝐴𝐵)    &   (𝜑𝑁 = (RingSpan‘𝑅))    &   (𝜑𝑈 = (𝑁𝐴))       (𝜑𝐴𝑈)
 
Theoremrgspnmin 41310 The ring-span is contained in all subspaces which contain all the generators. (Contributed by Stefan O'Rear, 30-Nov-2014.)
(𝜑𝑅 ∈ Ring)    &   (𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝐴𝐵)    &   (𝜑𝑁 = (RingSpan‘𝑅))    &   (𝜑𝑈 = (𝑁𝐴))    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑𝐴𝑆)       (𝜑𝑈𝑆)
 
Theoremrgspnid 41311 The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
(𝜑𝑅 ∈ Ring)    &   (𝜑𝐴 ∈ (SubRing‘𝑅))    &   (𝜑𝑆 = ((RingSpan‘𝑅)‘𝐴))       (𝜑𝑆 = 𝐴)
 
Theoremrngunsnply 41312* Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
(𝜑𝐵 ∈ (SubRing‘ℂfld))    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))       (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
 
Theoremflcidc 41313* Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.)
(𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))    &   (𝜑𝑆 ∈ Fin)    &   (𝜑𝐾𝑆)    &   ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
 
21.29.46  Endomorphism algebra
 
Syntaxcmend 41314 Syntax for module endomorphism algebra.
class MEndo
 
Definitiondf-mend 41315* Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015.)
MEndo = (𝑚 ∈ V ↦ (𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}))
 
Theoremalgstr 41316 Lemma to shorten proofs of algbase 41317 through algvsca 41321. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       𝐴 Struct ⟨1, 6⟩
 
Theoremalgbase 41317 The base set of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       (𝐵𝑉𝐵 = (Base‘𝐴))
 
Theoremalgaddg 41318 The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       ( +𝑉+ = (+g𝐴))
 
Theoremalgmulr 41319 The multiplicative operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       ( ×𝑉× = (.r𝐴))
 
Theoremalgsca 41320 The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       (𝑆𝑉𝑆 = (Scalar‘𝐴))
 
Theoremalgvsca 41321 The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       ( ·𝑉· = ( ·𝑠𝐴))
 
Theoremmendval 41322* Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
𝐵 = (𝑀 LMHom 𝑀)    &    + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))    &    × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))    &   𝑆 = (Scalar‘𝑀)    &    · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))       (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
 
Theoremmendbas 41323 Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
𝐴 = (MEndo‘𝑀)       (𝑀 LMHom 𝑀) = (Base‘𝐴)
 
Theoremmendplusgfval 41324* Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
𝐴 = (MEndo‘𝑀)    &   𝐵 = (Base‘𝐴)    &    + = (+g𝑀)       (+g𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f + 𝑦))
 
Theoremmendplusg 41325 A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.)
𝐴 = (MEndo‘𝑀)    &   𝐵 = (Base‘𝐴)    &    + = (+g𝑀)    &    = (+g𝐴)       ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋f + 𝑌))
 
Theoremmendmulrfval 41326* Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
𝐴 = (MEndo‘𝑀)    &   𝐵 = (Base‘𝐴)       (.r𝐴) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
 
Theoremmendmulr 41327 A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.)
𝐴 = (MEndo‘𝑀)    &   𝐵 = (Base‘𝐴)    &    · = (.r𝐴)       ((𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋𝑌))
 
Theoremmendsca 41328 The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
𝐴 = (MEndo‘𝑀)    &   𝑆 = (Scalar‘𝑀)       𝑆 = (Scalar‘𝐴)
 
Theoremmendvscafval 41329* Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
𝐴 = (MEndo‘𝑀)    &    · = ( ·𝑠𝑀)    &   𝐵 = (Base‘𝐴)    &   𝑆 = (Scalar‘𝑀)    &   𝐾 = (Base‘𝑆)    &   𝐸 = (Base‘𝑀)       ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
 
Theoremmendvsca 41330 A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.)
𝐴 = (MEndo‘𝑀)    &    · = ( ·𝑠𝑀)    &   𝐵 = (Base‘𝐴)    &   𝑆 = (Scalar‘𝑀)    &   𝐾 = (Base‘𝑆)    &   𝐸 = (Base‘𝑀)    &    = ( ·𝑠𝐴)       ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌))
 
Theoremmendring 41331 The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐴 = (MEndo‘𝑀)       (𝑀 ∈ LMod → 𝐴 ∈ Ring)
 
Theoremmendlmod 41332 The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.)
𝐴 = (MEndo‘𝑀)    &   𝑆 = (Scalar‘𝑀)       ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod)
 
Theoremmendassa 41333 The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.)
𝐴 = (MEndo‘𝑀)    &   𝑆 = (Scalar‘𝑀)       ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg)
 
21.29.47  Cyclic groups and order
 
Theoremidomrootle 41334* No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
𝐵 = (Base‘𝑅)    &    = (.g‘(mulGrp‘𝑅))       ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (♯‘{𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋}) ≤ 𝑁)
 
Theoremidomodle 41335* Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))    &   𝐵 = (Base‘𝐺)    &   𝑂 = (od‘𝐺)       ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ 𝑁)
 
Theoremfiuneneq 41336 Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.)
((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
 
Theoremidomsubgmo 41337* The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.)
𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))       ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁)
 
Theoremproot1mul 41338 Any primitive 𝑁-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.)
𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))    &   𝑂 = (od‘𝐺)    &   𝐾 = (mrCls‘(SubGrp‘𝐺))       (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (𝑂 “ {𝑁}) ∧ 𝑌 ∈ (𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌}))
 
Theoremproot1hash 41339 If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))    &   𝑂 = (od‘𝐺)       ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))
 
Theoremproot1ex 41340 The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))    &   𝑂 = (od‘𝐺)       (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))
 
21.29.48  Cyclotomic polynomials
 
Syntaxccytp 41341 Syntax for the sequence of cyclotomic polynomials.
class CytP
 
Definitiondf-cytp 41342* The Nth cyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015.)
CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))))
 
Theoremisdomn3 41343 Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (mulGrp‘𝑅)       (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
 
Theoremmon1pid 41344 Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝑃 = (Poly1𝑅)    &    1 = (1r𝑃)    &   𝑀 = (Monic1p𝑅)    &   𝐷 = ( deg1𝑅)       (𝑅 ∈ NzRing → ( 1𝑀 ∧ (𝐷1 ) = 0))
 
Theoremmon1psubm 41345 Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝑃 = (Poly1𝑅)    &   𝑀 = (Monic1p𝑅)    &   𝑈 = (mulGrp‘𝑃)       (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))
 
Theoremdeg1mhm 41346 Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐷 = ( deg1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 }))    &   𝑁 = (ℂflds0)       (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁))
 
Theoremcytpfn 41347 Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.)
CytP Fn ℕ
 
Theoremcytpval 41348* Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝑇 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))    &   𝑂 = (od‘𝑇)    &   𝑃 = (Poly1‘ℂfld)    &   𝑋 = (var1‘ℂfld)    &   𝑄 = (mulGrp‘𝑃)    &    = (-g𝑃)    &   𝐴 = (algSc‘𝑃)       (𝑁 ∈ ℕ → (CytP‘𝑁) = (𝑄 Σg (𝑟 ∈ (𝑂 “ {𝑁}) ↦ (𝑋 (𝐴𝑟)))))
 
21.29.49  Miscellaneous topology
 
Theoremfgraphopab 41349* Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
(𝐹:𝐴𝐵𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝐴𝑏𝐵) ∧ (𝐹𝑎) = 𝑏)})
 
Theoremfgraphxp 41350* Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
(𝐹:𝐴𝐵𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st𝑥)) = (2nd𝑥)})
 
Theoremhausgraph 41351 The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.)
((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾)))
 
Syntaxctopsep 41352 The class of separable topologies.
class TopSep
 
Syntaxctoplnd 41353 The class of Lindelöf topologies.
class TopLnd
 
Definitiondf-topsep 41354* A topology is separable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015.)
TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = 𝑗)}
 
Definitiondf-toplnd 41355* A topology is Lindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015.)
TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ 𝑥 = 𝑧))}
 
21.30  Mathbox for Noam Pasman
 
Theoremr1sssucd 41356 Deductive form of r1sssuc 9644. (Contributed by Noam Pasman, 19-Jan-2025.)
(𝜑𝐴 ∈ On)       (𝜑 → (𝑅1𝐴) ⊆ (𝑅1‘suc 𝐴))
 
21.31  Mathbox for Jon Pennant
 
Theoremiocunico 41357 Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))
 
Theoremiocinico 41358 The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})
 
Theoremiocmbl 41359 An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)
 
Theoremcnioobibld 41360* A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider 𝐹 = (𝑥 ∈ (0(,)1) ↦ (1 / 𝑥)). See cniccibl 25110 for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)       (𝜑𝐹 ∈ 𝐿1)
 
Theoremarearect 41361 The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   𝐷 ∈ ℝ    &   𝐴𝐵    &   𝐶𝐷    &   𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))       (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))
 
Theoremareaquad 41362* The area of a quadrilateral with two sides which are parallel to the y-axis in (ℝ × ℝ) is its width multiplied by the average height of its higher edge minus the average height of its lower edge. Co-author TA. (Contributed by Jon Pennant, 31-May-2019.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   𝐷 ∈ ℝ    &   𝐸 ∈ ℝ    &   𝐹 ∈ ℝ    &   𝐴 < 𝐵    &   𝐶𝐸    &   𝐷𝐹    &   𝑈 = (𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)))    &   𝑉 = (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)))    &   𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))}       (area‘𝑆) = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵𝐴))
 
21.32  Mathbox for Richard Penner
 
21.32.1  Natural addition of Cantor normal forms
 
Theoremomlimcl2 41363 The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.)
(((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))
 
Theoremoawordex2 41364* If 𝐶 is between 𝐴 (inclusive) and (𝐴 +o 𝐵) (exclusive), there is an ordinal which equals 𝐶 when summed to 𝐴. This is a slightly different statement than oawordex 8463 or oawordeu 8461. (Contributed by RP, 7-Jan-2025.)
(((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥𝐵 (𝐴 +o 𝑥) = 𝐶)
 
Theoremnnawordexg 41365* If an ordinal, 𝐵, is in a half-open interval between some 𝐴 and the next limit ordinal, 𝐵 is the sum of the 𝐴 and some natural number. This weakens the antecedent of nnawordex 8543. (Contributed by RP, 7-Jan-2025.)
((𝐴 ∈ On ∧ 𝐴𝐵𝐵 ∈ (𝐴 +o ω)) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)
 
Theoremsucclg 41366 Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.)
((𝐴𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴𝐵)
 
Theoremdflim5 41367* A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.)
(Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
 
Theoremoacl2g 41368 Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025.)
(((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶)
 
Theoremomabs2 41369 Ordinal multiplication by a larger ordinal is absorbed when the larger ordinal is either 2 or ω raised to some power of ω. (Contributed by RP, 12-Jan-2025.)
(((𝐴𝐵 ∧ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ 𝐵 = 2o ∨ (𝐵 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On))) → (𝐴 ·o 𝐵) = 𝐵)
 
Theoremomcl2 41370 Closure law for ordinal multiplication. (Contributed by RP, 12-Jan-2025.)
(((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)
 
Theoremomcl3g 41371 Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025.)
(((𝐴𝐶𝐵𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)
 
Theoremofoafg 41372* Addition operator for functions from sets into ordinals results in a function from the intersection of sets into an ordinal. (Contributed by RP, 5-Jan-2025.)
(((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → ( ∘f +o ↾ ((𝐷m 𝐴) × (𝐸m 𝐵))):((𝐷m 𝐴) × (𝐸m 𝐵))⟶(𝐹m 𝐶))
 
Theoremofoaf 41373 Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.)
(((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
 
Theoremofoafo 41374 Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025.)
((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴))
 
Theoremofoacl 41375 Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
(((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐴))) → (𝐹f +o 𝐺) ∈ (𝐶m 𝐴))
 
Theoremofoaid1 41376 Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
(((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → (𝐹f +o (𝐴 × {∅})) = 𝐹)
 
Theoremofoaid2 41377 Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
(((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)
 
Theoremofoaass 41378 Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.)
(((𝐴𝑉𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐵m 𝐴) ∧ 𝐻 ∈ (𝐵m 𝐴))) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
 
Theoremofoacom 41379 Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.)
((𝐴𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))
 
Theoremnaddcnff 41380 Addition operator for Cantor normal forms is a function into Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
 
Theoremnaddcnffn 41381 Addition operator for Cantor normal forms is a function. (Contributed by RP, 2-Jan-2025.)
((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
 
Theoremnaddcnffo 41382 Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆)
 
Theoremnaddcnfcl 41383 Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
(((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐹f +o 𝐺) ∈ 𝑆)
 
Theoremnaddcnfcom 41384 Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025.)
(((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))
 
Theoremnaddcnfid1 41385 Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.)
(((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
 
Theoremnaddcnfid2 41386 Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.)
(((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹)
 
Theoremnaddcnfass 41387 Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.)
(((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
 
21.32.2  Surreal Contributions
 
Theoremabeqabi 41388 Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024.)
𝐴 = {𝑥𝜓}       ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝜓))
 
Theoremabpr 41389* Condition for a class abstraction to be a pair. (Contributed by RP, 25-Aug-2024.)
({𝑥𝜑} = {𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑌𝑥 = 𝑍)))
 
Theoremabtp 41390* Condition for a class abstraction to be a triple. (Contributed by RP, 25-Aug-2024.)
({𝑥𝜑} = {𝑋, 𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)))
 
Theoremralopabb 41391* Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.)
𝑂 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}    &   (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓𝜒))       (∀𝑜𝑂 𝜓 ↔ ∀𝑥𝑦(𝜑𝜒))
 
Theorembropabg 41392* Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt 27030. (Contributed by RP, 26-Sep-2024.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))
 
Theoremfpwfvss 41393 Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.)
𝐹:𝐶⟶𝒫 𝐵       (𝐹𝐴) ⊆ 𝐵
 
Theoremsdomne0 41394 A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025.)
(𝐵𝐴𝐴 ≠ ∅)
 
Theoremsdomne0d 41395 A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.)
(𝜑𝐵𝐴)    &   (𝜑𝐵𝑉)       (𝜑𝐴 ≠ ∅)
 
Theoremsafesnsupfiss 41396 If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
(𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝑅 Or 𝐴)       (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵)
 
Theoremsafesnsupfiub 41397* If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
(𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝑅 Or 𝐴)    &   (𝜑 → ∀𝑥𝐵𝑦𝐶 𝑥𝑅𝑦)       (𝜑 → ∀𝑥 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦𝐶 𝑥𝑅𝑦)
 
Theoremsafesnsupfidom1o 41398 If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
(𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))    &   (𝜑𝐵 ∈ Fin)       (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
 
Theoremsafesnsupfilb 41399* If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 3-Sep-2024.)
(𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝑅 Or 𝐴)       (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
 
Theoremisoeq145d 41400 Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-46927
  Copyright terms: Public domain < Previous  Next >