Home | Metamath
Proof Explorer Theorem List (p. 414 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29567) |
Hilbert Space Explorer
(29568-31090) |
Users' Mathboxes
(31091-46927) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | aaitgo 41301 | The standard algebraic numbers 𝔸 are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝔸 = (IntgOver‘ℚ) | ||
Theorem | itgoss 41302 | An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇)) | ||
Theorem | itgocn 41303 | All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ (IntgOver‘𝑆) ⊆ ℂ | ||
Theorem | cnsrexpcl 41304 | Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) | ||
Theorem | fsumcnsrcl 41305* | Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
Theorem | cnsrplycl 41306 | Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) | ||
Theorem | rgspnval 41307* | Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) | ||
Theorem | rgspncl 41308 | The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑅)) | ||
Theorem | rgspnssid 41309 | The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | ||
Theorem | rgspnmin 41310 | The ring-span is contained in all subspaces which contain all the generators. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → 𝑈 ⊆ 𝑆) | ||
Theorem | rgspnid 41311 | The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘𝑅)‘𝐴)) ⇒ ⊢ (𝜑 → 𝑆 = 𝐴) | ||
Theorem | rngunsnply 41312* | Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
⊢ (𝜑 → 𝐵 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))) ⇒ ⊢ (𝜑 → (𝑉 ∈ 𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝‘𝑋))) | ||
Theorem | flcidc 41313* | Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
⊢ (𝜑 → 𝐹 = (𝑗 ∈ 𝑆 ↦ if(𝑗 = 𝐾, 1, 0))) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑆) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑆 ((𝐹‘𝑖) · 𝐵) = ⦋𝐾 / 𝑖⦌𝐵) | ||
Syntax | cmend 41314 | Syntax for module endomorphism algebra. |
class MEndo | ||
Definition | df-mend 41315* | Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ MEndo = (𝑚 ∈ V ↦ ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f (+g‘𝑚)𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑚)〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠 ‘𝑚)𝑦))〉})) | ||
Theorem | algstr 41316 | Lemma to shorten proofs of algbase 41317 through algvsca 41321. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝐴 Struct 〈1, 6〉 | ||
Theorem | algbase 41317 | The base set of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
Theorem | algaddg 41318 | The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
Theorem | algmulr 41319 | The multiplicative operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
Theorem | algsca 41320 | The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
Theorem | algvsca 41321 | The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
Theorem | mendval 41322* | Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐵 = (𝑀 LMHom 𝑀) & ⊢ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f (+g‘𝑀)𝑦)) & ⊢ × = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ · = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ 𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠 ‘𝑀)𝑦)) ⇒ ⊢ (𝑀 ∈ 𝑋 → (MEndo‘𝑀) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉})) | ||
Theorem | mendbas 41323 | Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) | ||
Theorem | mendplusgfval 41324* | Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (+g‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f + 𝑦)) | ||
Theorem | mendplusg 41325 | A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) & ⊢ ✚ = (+g‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) | ||
Theorem | mendmulrfval 41326* | Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (.r‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) | ||
Theorem | mendmulr 41327 | A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∘ 𝑌)) | ||
Theorem | mendsca 41328 | The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ 𝑆 = (Scalar‘𝐴) | ||
Theorem | mendvscafval 41329* | Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) ⇒ ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) | ||
Theorem | mendvsca 41330 | A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) | ||
Theorem | mendring 41331 | The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → 𝐴 ∈ Ring) | ||
Theorem | mendlmod 41332 | The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod) | ||
Theorem | mendassa 41333 | The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
Theorem | idomrootle 41334* | No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑦 ∈ 𝐵 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≤ 𝑁) | ||
Theorem | idomodle 41335* | Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ≤ 𝑁) | ||
Theorem | fiuneneq 41336 | Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → ((𝐴 ∪ 𝐵) ≈ 𝐴 ↔ 𝐴 = 𝐵)) | ||
Theorem | idomsubgmo 41337* | The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁) | ||
Theorem | proot1mul 41338 | Any primitive 𝑁-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑋 ∈ (◡𝑂 “ {𝑁}) ∧ 𝑌 ∈ (◡𝑂 “ {𝑁}))) → 𝑋 ∈ (𝐾‘{𝑌})) | ||
Theorem | proot1hash 41339 | If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘(◡𝑂 “ {𝑁})) = (ϕ‘𝑁)) | ||
Theorem | proot1ex 41340 | The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (◡𝑂 “ {𝑁})) | ||
Syntax | ccytp 41341 | Syntax for the sequence of cyclotomic polynomials. |
class CytP | ||
Definition | df-cytp 41342* | The Nth cyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) | ||
Theorem | isdomn3 41343 | Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈))) | ||
Theorem | mon1pid 41344 | Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑃) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → ( 1 ∈ 𝑀 ∧ (𝐷‘ 1 ) = 0)) | ||
Theorem | mon1psubm 41345 | Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝑈 = (mulGrp‘𝑃) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈)) | ||
Theorem | deg1mhm 41346 | Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑌 = ((mulGrp‘𝑃) ↾s (𝐵 ∖ { 0 })) & ⊢ 𝑁 = (ℂfld ↾s ℕ0) ⇒ ⊢ (𝑅 ∈ Domn → (𝐷 ↾ (𝐵 ∖ { 0 })) ∈ (𝑌 MndHom 𝑁)) | ||
Theorem | cytpfn 41347 | Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ CytP Fn ℕ | ||
Theorem | cytpval 41348* | Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ 𝑂 = (od‘𝑇) & ⊢ 𝑃 = (Poly1‘ℂfld) & ⊢ 𝑋 = (var1‘ℂfld) & ⊢ 𝑄 = (mulGrp‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ (𝑁 ∈ ℕ → (CytP‘𝑁) = (𝑄 Σg (𝑟 ∈ (◡𝑂 “ {𝑁}) ↦ (𝑋 − (𝐴‘𝑟))))) | ||
Theorem | fgraphopab 41349* | Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝐹‘𝑎) = 𝑏)}) | ||
Theorem | fgraphxp 41350* | Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 = {𝑥 ∈ (𝐴 × 𝐵) ∣ (𝐹‘(1st ‘𝑥)) = (2nd ‘𝑥)}) | ||
Theorem | hausgraph 41351 | The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (Clsd‘(𝐽 ×t 𝐾))) | ||
Syntax | ctopsep 41352 | The class of separable topologies. |
class TopSep | ||
Syntax | ctoplnd 41353 | The class of Lindelöf topologies. |
class TopLnd | ||
Definition | df-topsep 41354* | A topology is separable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015.) |
⊢ TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 ∪ 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = ∪ 𝑗)} | ||
Definition | df-toplnd 41355* | A topology is Lindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015.) |
⊢ TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 = ∪ 𝑧))} | ||
Theorem | r1sssucd 41356 | Deductive form of r1sssuc 9644. (Contributed by Noam Pasman, 19-Jan-2025.) |
⊢ (𝜑 → 𝐴 ∈ On) ⇒ ⊢ (𝜑 → (𝑅1‘𝐴) ⊆ (𝑅1‘suc 𝐴)) | ||
Theorem | iocunico 41357 | Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶)) | ||
Theorem | iocinico 41358 | The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵}) | ||
Theorem | iocmbl 41359 | An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol) | ||
Theorem | cnioobibld 41360* | A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider 𝐹 = (𝑥 ∈ (0(,)1) ↦ (1 / 𝑥)). See cniccibl 25110 for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
Theorem | arearect 41361 | The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 𝐷 ∈ ℝ & ⊢ 𝐴 ≤ 𝐵 & ⊢ 𝐶 ≤ 𝐷 & ⊢ 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⇒ ⊢ (area‘𝑆) = ((𝐵 − 𝐴) · (𝐷 − 𝐶)) | ||
Theorem | areaquad 41362* | The area of a quadrilateral with two sides which are parallel to the y-axis in (ℝ × ℝ) is its width multiplied by the average height of its higher edge minus the average height of its lower edge. Co-author TA. (Contributed by Jon Pennant, 31-May-2019.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 𝐷 ∈ ℝ & ⊢ 𝐸 ∈ ℝ & ⊢ 𝐹 ∈ ℝ & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 ≤ 𝐸 & ⊢ 𝐷 ≤ 𝐹 & ⊢ 𝑈 = (𝐶 + (((𝑥 − 𝐴) / (𝐵 − 𝐴)) · (𝐷 − 𝐶))) & ⊢ 𝑉 = (𝐸 + (((𝑥 − 𝐴) / (𝐵 − 𝐴)) · (𝐹 − 𝐸))) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))} ⇒ ⊢ (area‘𝑆) = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵 − 𝐴)) | ||
Theorem | omlimcl2 41363 | The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴)) | ||
Theorem | oawordex2 41364* | If 𝐶 is between 𝐴 (inclusive) and (𝐴 +o 𝐵) (exclusive), there is an ordinal which equals 𝐶 when summed to 𝐴. This is a slightly different statement than oawordex 8463 or oawordeu 8461. (Contributed by RP, 7-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) | ||
Theorem | nnawordexg 41365* | If an ordinal, 𝐵, is in a half-open interval between some 𝐴 and the next limit ordinal, 𝐵 is the sum of the 𝐴 and some natural number. This weakens the antecedent of nnawordex 8543. (Contributed by RP, 7-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +o ω)) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) | ||
Theorem | succlg 41366 | Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.) |
⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) | ||
Theorem | dflim5 41367* | A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.) |
⊢ (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))) | ||
Theorem | oacl2g 41368 | Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶) | ||
Theorem | omabs2 41369 | Ordinal multiplication by a larger ordinal is absorbed when the larger ordinal is either 2 or ω raised to some power of ω. (Contributed by RP, 12-Jan-2025.) |
⊢ (((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ 𝐵 = 2o ∨ (𝐵 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On))) → (𝐴 ·o 𝐵) = 𝐵) | ||
Theorem | omcl2 41370 | Closure law for ordinal multiplication. (Contributed by RP, 12-Jan-2025.) |
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) | ||
Theorem | omcl3g 41371 | Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025.) |
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) | ||
Theorem | ofoafg 41372* | Addition operator for functions from sets into ordinals results in a function from the intersection of sets into an ordinal. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → ( ∘f +o ↾ ((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))):((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐹 ↑m 𝐶)) | ||
Theorem | ofoaf 41373 | Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))):((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐸 ↑m 𝐶)) | ||
Theorem | ofoafo 41374 | Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))–onto→(𝐶 ↑m 𝐴)) | ||
Theorem | ofoacl 41375 | Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) ∈ (𝐶 ↑m 𝐴)) | ||
Theorem | ofoaid1 41376 | Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → (𝐹 ∘f +o (𝐴 × {∅})) = 𝐹) | ||
Theorem | ofoaid2 41377 | Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹) | ||
Theorem | ofoaass 41378 | Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → ((𝐹 ∘f +o 𝐺) ∘f +o 𝐻) = (𝐹 ∘f +o (𝐺 ∘f +o 𝐻))) | ||
Theorem | ofoacom 41379 | Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) | ||
Theorem | naddcnff 41380 | Addition operator for Cantor normal forms is a function into Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆) | ||
Theorem | naddcnffn 41381 | Addition operator for Cantor normal forms is a function. (Contributed by RP, 2-Jan-2025.) |
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | ||
Theorem | naddcnffo 41382 | Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto→𝑆) | ||
Theorem | naddcnfcl 41383 | Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) ∈ 𝑆) | ||
Theorem | naddcnfcom 41384 | Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) | ||
Theorem | naddcnfid1 41385 | Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) | ||
Theorem | naddcnfid2 41386 | Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) | ||
Theorem | naddcnfass 41387 | Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → ((𝐹 ∘f +o 𝐺) ∘f +o 𝐻) = (𝐹 ∘f +o (𝐺 ∘f +o 𝐻))) | ||
Theorem | abeqabi 41388 | Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024.) |
⊢ 𝐴 = {𝑥 ∣ 𝜓} ⇒ ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝜓)) | ||
Theorem | abpr 41389* | Condition for a class abstraction to be a pair. (Contributed by RP, 25-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
Theorem | abtp 41390* | Condition for a class abstraction to be a triple. (Contributed by RP, 25-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑋, 𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
Theorem | ralopabb 41391* | Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.) |
⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} & ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) | ||
Theorem | bropabg 41392* | Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt 27030. (Contributed by RP, 26-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)) | ||
Theorem | fpwfvss 41393 | Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.) |
⊢ 𝐹:𝐶⟶𝒫 𝐵 ⇒ ⊢ (𝐹‘𝐴) ⊆ 𝐵 | ||
Theorem | sdomne0 41394 | A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025.) |
⊢ (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅) | ||
Theorem | sdomne0d 41395 | A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.) |
⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
Theorem | safesnsupfiss 41396 | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵) | ||
Theorem | safesnsupfiub 41397* | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) | ||
Theorem | safesnsupfidom1o 41398 | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o) | ||
Theorem | safesnsupfilb 41399* | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 3-Sep-2024.) |
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦) | ||
Theorem | isoeq145d 41400 | Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |