| Metamath
Proof Explorer Theorem List (p. 414 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dih0cnv 41301 | The isomorphism H converse value of the zero subspace is the lattice zero. (Contributed by NM, 19-Jun-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑍 = (0g‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘{𝑍}) = 0 ) | ||
| Theorem | dih0rn 41302 | The zero subspace belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → { 0 } ∈ ran 𝐼) | ||
| Theorem | dih0sb 41303 | A subspace is zero iff the converse of its isomorphism is lattice zero. (Contributed by NM, 17-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑍 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋 = {𝑍} ↔ (◡𝐼‘𝑋) = 0 )) | ||
| Theorem | dih1 41304 | The value of isomorphism H at the lattice unity is the set of all vectors. (Contributed by NM, 13-Mar-2014.) |
| ⊢ 1 = (1.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 1 ) = 𝑉) | ||
| Theorem | dih1rn 41305 | The full vector space belongs to the range of isomorphism H. (Contributed by NM, 19-Jun-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 ∈ ran 𝐼) | ||
| Theorem | dih1cnv 41306 | The isomorphism H converse value of the full vector space is the lattice one. (Contributed by NM, 19-Jun-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘𝑉) = 1 ) | ||
| Theorem | dihwN 41307* | Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) | ||
| Theorem | dihmeetlem1N 41308* | Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑞) & ⊢ 0 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihglblem5apreN 41309* | A conjunction property of isomorphism H. TODO: reduce antecedent size; general review for shorter proof. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑞) & ⊢ 0 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑊)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑊))) | ||
| Theorem | dihglblem5aN 41310 | A conjunction property of isomorphism H. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑋 ∧ 𝑊)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑊))) | ||
| Theorem | dihglblem2aN 41311* | Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) → 𝑇 ≠ ∅) | ||
| Theorem | dihglblem2N 41312* | The GLB of a set of lattice elements 𝑆 is the same as that of the set 𝑇 with elements of 𝑆 cut down to be under 𝑊. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐺‘𝑆) = (𝐺‘𝑇)) | ||
| Theorem | dihglblem3N 41313* | Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} & ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑇)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) | ||
| Theorem | dihglblem3aN 41314* | Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} & ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) | ||
| Theorem | dihglblem4 41315* | Isomorphism H of a lattice glb. (Contributed by NM, 21-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} & ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) ⊆ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) | ||
| Theorem | dihglblem5 41316* | Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅)) → ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥) ∈ 𝑆) | ||
| Theorem | dihmeetlem2N 41317 | Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑞) & ⊢ 0 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihglbcpreN 41318* | Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐹 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ ¬ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) | ||
| Theorem | dihglbcN 41319* | Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ ¬ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) | ||
| Theorem | dihmeetcN 41320 | Isomorphism H of a lattice meet when the meet is not under the fiducial hyperplane 𝑊. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihmeetbN 41321 | Isomorphism H of a lattice meet when one element is under the fiducial hyperplane 𝑊. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihmeetbclemN 41322 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = (((𝐼‘𝑋) ∩ (𝐼‘𝑌)) ∩ (𝐼‘𝑊))) | ||
| Theorem | dihmeetlem3N 41323 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑄 ≠ 𝑅) | ||
| Theorem | dihmeetlem4preN 41324* | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) = { 0 }) | ||
| Theorem | dihmeetlem4N 41325 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) = { 0 }) | ||
| Theorem | dihmeetlem5 41326 | Part of proof that isomorphism H is order-preserving . (Contributed by NM, 6-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → (𝑋 ∧ (𝑌 ∨ 𝑄)) = ((𝑋 ∧ 𝑌) ∨ 𝑄)) | ||
| Theorem | dihmeetlem6 41327 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → ¬ (𝑋 ∧ (𝑌 ∨ 𝑄)) ≤ 𝑊) | ||
| Theorem | dihmeetlem7N 41328 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → (((𝑋 ∧ 𝑌) ∨ 𝑝) ∧ 𝑌) = (𝑋 ∧ 𝑌)) | ||
| Theorem | dihjatc1 41329 | Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change ∨ order of (𝑋 ∧ 𝑌) ∨ 𝑄 here and down? (Contributed by NM, 6-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑄)) = ((𝐼‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑌)))) | ||
| Theorem | dihjatc2N 41330 | Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘(𝑄 ∨ (𝑋 ∧ 𝑌))) = ((𝐼‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑌)))) | ||
| Theorem | dihjatc3 41331 | Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑄)) = ((𝐼‘(𝑋 ∧ 𝑌)) ⊕ (𝐼‘𝑄))) | ||
| Theorem | dihmeetlem8N 41332 | Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change ∨ order of (𝑋 ∧ 𝑌) ∨ 𝑝 here and down? (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑝 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑝)) = ((𝐼‘𝑝) ⊕ (𝐼‘(𝑋 ∧ 𝑌)))) | ||
| Theorem | dihmeetlem9N 41333 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (((𝐼‘𝑝) ⊕ (𝐼‘(𝑋 ∧ 𝑌))) ∩ (𝐼‘𝑌)) = ((𝐼‘(𝑋 ∧ 𝑌)) ⊕ ((𝐼‘𝑝) ∩ (𝐼‘𝑌)))) | ||
| Theorem | dihmeetlem10N 41334 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → (𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑝)) = ((𝐼‘𝑋) ∩ (𝐼‘(𝑌 ∨ 𝑝)))) | ||
| Theorem | dihmeetlem11N 41335 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋)) → ((𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑝)) ∩ (𝐼‘𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihmeetlem12N 41336 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝑝 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((𝐼‘(𝑋 ∧ 𝑌)) ⊕ ((𝐼‘𝑝) ∩ (𝐼‘𝑌))) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihmeetlem13N 41337* | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) & ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) = { 0 }) | ||
| Theorem | dihmeetlem14N 41338 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → ((𝐼‘(𝑌 ∧ 𝑝)) ⊕ ((𝐼‘𝑟) ∩ (𝐼‘𝑝))) = ((𝐼‘𝑌) ∩ (𝐼‘𝑝))) | ||
| Theorem | dihmeetlem15N 41339 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → ((𝐼‘𝑟) ∩ (𝐼‘𝑝)) = { 0 }) | ||
| Theorem | dihmeetlem16N 41340 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝐼‘(𝑌 ∧ 𝑝)) = ((𝐼‘𝑌) ∩ (𝐼‘𝑝))) | ||
| Theorem | dihmeetlem17N 41341 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊 ∧ 𝑝 ≤ 𝑋)) → (𝑌 ∧ 𝑝) = 0 ) | ||
| Theorem | dihmeetlem18N 41342 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊))) → ((𝐼‘𝑌) ∩ (𝐼‘𝑝)) = { 0 }) | ||
| Theorem | dihmeetlem19N 41343 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊))) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihmeetlem20N 41344 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihmeetALTN 41345 | Isomorphism H of a lattice meet. This version does not depend on the atomisticity of the constructed vector space. TODO: Delete? (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dih1dimatlem0 41346* | Lemma for dih1dimat 41348. (Contributed by NM, 11-Apr-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = (Atoms‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐽 = (invr‘𝐹) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 ≠ 𝑂) → ((𝑖 = (𝑝‘𝐺) ∧ 𝑝 ∈ 𝐸) ↔ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ ∃𝑡 ∈ 𝐸 (𝑖 = (𝑡‘𝑓) ∧ 𝑝 = (𝑡 ∘ 𝑠))))) | ||
| Theorem | dih1dimatlem 41347* | Lemma for dih1dimat 41348. (Contributed by NM, 10-Apr-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = (Atoms‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐽 = (invr‘𝐹) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = (((𝐽‘𝑠)‘𝑓)‘𝑃)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝐴) → 𝐷 ∈ ran 𝐼) | ||
| Theorem | dih1dimat 41348 | Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ran 𝐼) | ||
| Theorem | dihlsprn 41349 | The span of a vector belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼) | ||
| Theorem | dihlspsnssN 41350 | A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ (𝑁‘{𝑋})) → (𝑇 ∈ 𝑆 ↔ 𝑇 ∈ ran 𝐼)) | ||
| Theorem | dihlspsnat 41351 | The inverse isomorphism H of the span of a singleton is a Hilbert lattice atom. (Contributed by NM, 27-Apr-2014.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (◡𝐼‘(𝑁‘{𝑋})) ∈ 𝐴) | ||
| Theorem | dihatlat 41352 | The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSAtoms‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) → (𝐼‘𝑄) ∈ 𝐿) | ||
| Theorem | dihat 41353 | There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝐼‘𝑃) ∈ 𝐴) | ||
| Theorem | dihpN 41354* | The value of isomorphism H at the fiducial atom 𝑃 is determined by the vector 〈0, 𝑆〉 (the zero translation ltrnid 40153 and a nonzero member of the endomorphism ring). In particular, 𝑆 can be replaced with the ring unity ( I ↾ 𝑇). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂)) ⇒ ⊢ (𝜑 → (𝐼‘𝑃) = (𝑁‘{〈( I ↾ 𝐵), 𝑆〉})) | ||
| Theorem | dihlatat 41355 | The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSAtoms‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐿) → (◡𝐼‘𝑄) ∈ 𝐴) | ||
| Theorem | dihatexv 41356* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼‘𝑄) = (𝑁‘{𝑥}))) | ||
| Theorem | dihatexv2 41357* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (◡𝐼‘(𝑁‘{𝑥})))) | ||
| Theorem | dihglblem6 41358* | Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑃 = (LSubSp‘𝑈) & ⊢ 𝐷 = (LSAtoms‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) | ||
| Theorem | dihglb 41359* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) | ||
| Theorem | dihglb2 41360* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝑉) → (𝐼‘(𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ (𝐼‘𝑥)})) = ∩ {𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦}) | ||
| Theorem | dihmeet 41361 | Isomorphism H of a lattice meet. (Contributed by NM, 13-Apr-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | ||
| Theorem | dihintcl 41362 | The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑆 ∈ ran 𝐼) | ||
| Theorem | dihmeetcl 41363 | Closure of closed subspace meet for DVecH vector space. (Contributed by NM, 5-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) ∈ ran 𝐼) | ||
| Theorem | dihmeet2 41364 | Reverse isomorphism H of a closed subspace intersection. (Contributed by NM, 15-Jan-2015.) |
| ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (◡𝐼‘(𝑋 ∩ 𝑌)) = ((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) | ||
| Syntax | coch 41365 | Extend class notation with subspace orthocomplement for DVecH vector space. |
| class ocH | ||
| Definition | df-doch 41366* | Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.) |
| ⊢ ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))))) | ||
| Theorem | dochffval 41367* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (ocH‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))) | ||
| Theorem | dochfval 41368* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))) | ||
| Theorem | dochval 41369* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) | ||
| Theorem | dochval2 41370* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Apr-2014.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) | ||
| Theorem | dochcl 41371 | Closure of subspace orthocomplement for DVecH vector space. (Contributed by NM, 9-Mar-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ ran 𝐼) | ||
| Theorem | dochlss 41372 | A subspace orthocomplement is a subspace of the DVecH vector space. (Contributed by NM, 22-Jul-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ 𝑆) | ||
| Theorem | dochssv 41373 | A subspace orthocomplement belongs to the DVecH vector space. (Contributed by NM, 22-Jul-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) | ||
| Theorem | dochfN 41374 | Domain and codomain of the subspace orthocomplement for the DVecH vector space. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶ran 𝐼) | ||
| Theorem | dochvalr 41375 | Orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘𝑋)))) | ||
| Theorem | doch0 41376 | Orthocomplement of the zero subspace. (Contributed by NM, 19-Jun-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{ 0 }) = 𝑉) | ||
| Theorem | doch1 41377 | Orthocomplement of the unit subspace (all vectors). (Contributed by NM, 19-Jun-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑉) = { 0 }) | ||
| Theorem | dochoc0 41378 | The zero subspace is closed. (Contributed by NM, 16-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{ 0 })) = { 0 }) | ||
| Theorem | dochoc1 41379 | The unit subspace (all vectors) is closed. (Contributed by NM, 16-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) | ||
| Theorem | dochvalr2 41380 | Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝐼‘𝑋)) = (𝐼‘( ⊥ ‘𝑋))) | ||
| Theorem | dochvalr3 41381 | Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015.) |
| ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → ( ⊥ ‘(◡𝐼‘𝑋)) = (◡𝐼‘(𝑁‘𝑋))) | ||
| Theorem | doch2val2 41382* | Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) | ||
| Theorem | dochss 41383 | Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
| Theorem | dochocss 41384 | Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
| Theorem | dochoc 41385 | Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
| Theorem | dochsscl 41386 | If a set of vectors is included in a closed set, so is its closure. (Contributed by NM, 17-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) ⊆ 𝑌)) | ||
| Theorem | dochoccl 41387 | A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ ran 𝐼 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) | ||
| Theorem | dochord 41388 | Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) | ||
| Theorem | dochord2N 41389 | Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (( ⊥ ‘𝑋) ⊆ 𝑌 ↔ ( ⊥ ‘𝑌) ⊆ 𝑋)) | ||
| Theorem | dochord3 41390 | Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋 ⊆ ( ⊥ ‘𝑌) ↔ 𝑌 ⊆ ( ⊥ ‘𝑋))) | ||
| Theorem | doch11 41391 | Orthocomplement is one-to-one. (Contributed by NM, 12-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (( ⊥ ‘𝑋) = ( ⊥ ‘𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | dochsordN 41392 | Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) ⇒ ⊢ (𝜑 → (𝑋 ⊊ 𝑌 ↔ ( ⊥ ‘𝑌) ⊊ ( ⊥ ‘𝑋))) | ||
| Theorem | dochn0nv 41393 | An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (( ⊥ ‘𝑋) ≠ { 0 } ↔ ( ⊥ ‘( ⊥ ‘𝑋)) ≠ 𝑉)) | ||
| Theorem | dihoml4c 41394 | Version of dihoml4 41395 with closed subspaces. (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) ⇒ ⊢ (𝜑 → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) | ||
| Theorem | dihoml4 41395 | Orthomodular law for constructed vector space H. Lemma 3.3(1) in [Holland95] p. 215. (poml4N 39971 analog.) (Contributed by NM, 15-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) ⇒ ⊢ (𝜑 → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋))) | ||
| Theorem | dochspss 41396 | The span of a set of vectors is included in their double orthocomplement. (Contributed by NM, 26-Jul-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
| Theorem | dochocsp 41397 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘(𝑁‘𝑋)) = ( ⊥ ‘𝑋)) | ||
| Theorem | dochspocN 41398 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘( ⊥ ‘𝑋)) = ( ⊥ ‘(𝑁‘𝑋))) | ||
| Theorem | dochocsn 41399 | The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{𝑋})) = (𝑁‘{𝑋})) | ||
| Theorem | dochsncom 41400 | Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{𝑌}) ↔ 𝑌 ∈ ( ⊥ ‘{𝑋}))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |