Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbor | Structured version Visualization version GIF version |
Description: Disjunction inside and outside of a substitution are equivalent. (Contributed by NM, 29-Sep-2002.) |
Ref | Expression |
---|---|
sbor | ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 2304 | . . 3 ⊢ ([𝑦 / 𝑥](¬ 𝜑 → 𝜓) ↔ ([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbn 2281 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
3 | 2 | imbi1i 353 | . . 3 ⊢ (([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥]𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
4 | 1, 3 | bitri 278 | . 2 ⊢ ([𝑦 / 𝑥](¬ 𝜑 → 𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
5 | df-or 848 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
6 | 5 | sbbii 2082 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ [𝑦 / 𝑥](¬ 𝜑 → 𝜓)) |
7 | df-or 848 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
8 | 4, 6, 7 | 3bitr4i 306 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∨ wo 847 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2141 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ex 1788 df-nf 1792 df-sb 2071 |
This theorem is referenced by: sbcor 3747 unab 4213 |
Copyright terms: Public domain | W3C validator |