| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbor | Structured version Visualization version GIF version | ||
| Description: Disjunction inside and outside of a substitution are equivalent. (Contributed by NM, 29-Sep-2002.) |
| Ref | Expression |
|---|---|
| sbor | ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim 2302 | . . 3 ⊢ ([𝑦 / 𝑥](¬ 𝜑 → 𝜓) ↔ ([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | sbn 2279 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 3 | 2 | imbi1i 349 | . . 3 ⊢ (([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥]𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ ([𝑦 / 𝑥](¬ 𝜑 → 𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| 5 | df-or 848 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 6 | 5 | sbbii 2075 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ [𝑦 / 𝑥](¬ 𝜑 → 𝜓)) |
| 7 | df-or 848 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: sbcor 3821 unab 4288 |
| Copyright terms: Public domain | W3C validator |