Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbtrt | Structured version Visualization version GIF version |
Description: Partially closed form of sbtr 2535. Usage of this theorem is discouraged because it depends on ax-13 2379. (Contributed by BJ, 4-Jun-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbtrt.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sbtrt | ⊢ (∀𝑦[𝑦 / 𝑥]𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2073 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥]𝜑 → [𝑥 / 𝑦][𝑦 / 𝑥]𝜑) | |
2 | sbtrt.nf | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | 2 | sbid2 2527 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 1, 3 | sylib 221 | 1 ⊢ (∀𝑦[𝑦 / 𝑥]𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 Ⅎwnf 1785 [wsb 2069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 ax-13 2379 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-nf 1786 df-sb 2070 |
This theorem is referenced by: sbtr 2535 |
Copyright terms: Public domain | W3C validator |