Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbtrt | Structured version Visualization version GIF version |
Description: Partially closed form of sbtr 2521. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by BJ, 4-Jun-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbtrt.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sbtrt | ⊢ (∀𝑦[𝑦 / 𝑥]𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2074 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥]𝜑 → [𝑥 / 𝑦][𝑦 / 𝑥]𝜑) | |
2 | sbtrt.nf | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | 2 | sbid2 2513 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 1, 3 | sylib 217 | 1 ⊢ (∀𝑦[𝑦 / 𝑥]𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1789 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 |
This theorem is referenced by: sbtr 2521 |
Copyright terms: Public domain | W3C validator |