MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbtrt Structured version   Visualization version   GIF version

Theorem sbtrt 2515
Description: Partially closed form of sbtr 2516. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by BJ, 4-Jun-2019.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbtrt.nf 𝑦𝜑
Assertion
Ref Expression
sbtrt (∀𝑦[𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbtrt
StepHypRef Expression
1 stdpc4 2071 . 2 (∀𝑦[𝑦 / 𝑥]𝜑 → [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)
2 sbtrt.nf . . 3 𝑦𝜑
32sbid2 2508 . 2 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
41, 3sylib 218 1 (∀𝑦[𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wnf 1784  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068
This theorem is referenced by:  sbtr  2516
  Copyright terms: Public domain W3C validator