MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbtrt Structured version   Visualization version   GIF version

Theorem sbtrt 2496
Description: Partially closed form of sbtr 2497. (Contributed by BJ, 4-Jun-2019.)
Hypothesis
Ref Expression
sbtrt.nf 𝑦𝜑
Assertion
Ref Expression
sbtrt (∀𝑦[𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbtrt
StepHypRef Expression
1 stdpc4 2427 . 2 (∀𝑦[𝑦 / 𝑥]𝜑 → [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)
2 sbtrt.nf . . 3 𝑦𝜑
32sbid2 2488 . 2 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
41, 3sylib 210 1 (∀𝑦[𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1599  wnf 1827  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-10 2134  ax-12 2162  ax-13 2333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-sb 2012
This theorem is referenced by:  sbtr  2497
  Copyright terms: Public domain W3C validator